Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biochem ; 175(6): 611-627, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38268329

RESUMEN

Whole blood transcriptome analysis is a valuable approachin medical research, primarily due to the ease of sample collection and the richness of the information obtained. Since the expression profile of individual genes in the analysis is influenced by medical traits and demographic attributes such as age and gender, there has been a growing demand for a comprehensive database for blood transcriptome analysis. Here, we performed whole blood RNA sequencing (RNA-seq) analysis on 576 participants stratified by age (20-30s and 60-70s) and gender from cohorts of the Tohoku Medical Megabank (TMM). A part of female segment included pregnant women. We did not exclude the globin gene family in our RNA-seq study, which enabled us to identify instances of hereditary persistence of fetal hemoglobin based on the HBG1 and HBG2 expression information. Comparing stratified populations allowed us to identify groups of genes associated with age-related changes and gender differences. We also found that the immune response status, particularly measured by neutrophil-to-lymphocyte ratio (NLR), strongly influences the diversity of individual gene expression profiles in whole blood transcriptome analysis. This stratification has resulted in a data set that will be highly beneficial for future whole blood transcriptome analysis in the Japanese population.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos , Japón , Anciano , Adulto Joven , Factores de Edad , Factores Sexuales , Pueblo Asiatico/genética , Pueblos del Este de Asia
2.
Sci Rep ; 14(1): 15681, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977808

RESUMEN

Understanding the physiological changes associated with aging and the associated disease risks is essential to establish biomarkers as indicators of biological aging. This study used the NMR-measured plasma metabolome to calculate age-specific metabolite indices. In doing so, the scope of the study was deliberately simplified to capture general trends and insights into age-related changes in metabolic patterns. In addition, changes in metabolite concentrations with age were examined in detail, with the period from 55-59 to 60-64 years being a period of significant metabolic change, particularly in men, and from 45-49 to 50-54 years in females. These results illustrate the different variations in metabolite concentrations by sex and provide new insights into the relationship between age and metabolic diseases.


Asunto(s)
Envejecimiento , Metaboloma , Metabolómica , Humanos , Femenino , Masculino , Persona de Mediana Edad , Metabolómica/métodos , Japón , Anciano , Envejecimiento/metabolismo , Adulto , Factores Sexuales , Factores de Edad , Biomarcadores/sangre , Estudios de Cohortes , Espectroscopía de Resonancia Magnética , Pueblos del Este de Asia
3.
Microorganisms ; 12(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39065094

RESUMEN

The gastrointestinal (GI) tract harbors trillions of microorganisms known to influence human health and disease, and next-generation sequencing (NGS) now enables the in-depth analysis of their diversity and functions. Although a significant amount of research has been conducted on the GI microbiome, comprehensive metagenomic datasets covering the entire tract are scarce due to cost and technical challenges. Despite the widespread use of fecal samples, integrated datasets encompassing the entire digestive process, beginning at the mouth and ending with feces, are lacking. With this study, we aimed to fill this gap by analyzing the complete metagenome of the GI tract, providing insights into the dynamics of the microbiota and potential therapeutic avenues. In this study, we delved into the complex world of the GI microbiota, which we examined in five healthy Japanese subjects. While samples from the whole GI flora and fecal samples provided sufficient bacteria, samples obtained from the stomach and duodenum posed a challenge. Using a principal coordinate analysis (PCoA), clear clustering patterns were identified; these revealed significant diversity in the duodenum. Although this study was limited by its small sample size, the flora in the overall GI tract showed unwavering consistency, while the duodenum exhibited unprecedented phylogenetic diversity. A visual heat map illustrates the discrepancy in abundance, with Fusobacteria and Bacilli dominating the upper GI tract and Clostridia and Bacteroidia dominating the fecal samples. Negativicutes and Actinobacteria were found throughout the digestive tract. This study demonstrates that it is possible to continuously collect microbiome samples throughout the human digestive tract. These findings not only shed light on the complexity of GI microbiota but also provide a basis for future research.

4.
Plant Direct ; 7(12): e550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38116181

RESUMEN

α-Tomatine is a major saponin that accumulates in tomatoes (Solanum lycopersicum). We previously reported that α-tomatine secreted from tomato roots modulates root-associated bacterial communities, particularly by enriching the abundance of Sphingobium belonging to the family Sphingomonadaceae. To further characterize the α-tomatine-mediated interactions between tomato plants and soil bacterial microbiota, we first cultivated tomato plants in pots containing different microbial inoculants originating from three field soils. Four bacterial genera, namely, Sphingobium, Bradyrhizobium, Cupriavidus, and Rhizobacter, were found to be commonly enriched in tomato root-associated bacterial communities. We constructed a pseudo-rhizosphere system using a mullite ceramic tube as an artificial root to investigate the influence of α-tomatine in modifying bacterial communities. The addition of α-tomatine from the artificial root resulted in the formation of a concentration gradient of α-tomatine that mimicked the tomato rhizosphere, and distinctive bacterial communities were observed in the soil close to the artificial root. Sphingobium was enriched according to the α-tomatine concentration gradient, whereas Bradyrhizobium, Cupriavidus, and Rhizobacter were not enriched in α-tomatine-treated soil. The tomato root-associated bacterial communities were similar to the soil bacterial communities in the vicinity of artificial root-secreting exudates; however, hierarchical cluster analysis revealed a distinction between root-associated and pseudo-rhizosphere bacterial communities. These results suggest that the pseudo-rhizosphere device at least partially creates a rhizosphere environment in which α-tomatine enhances the abundance of Sphingobium in the vicinity of the root. Enrichment of Sphingobium in the tomato rhizosphere was also apparent in publicly available microbiota data, further supporting the tight association between tomato roots and Sphingobium mediated by α-tomatine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA