Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Soft Matter ; 19(16): 2902-2907, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36987748

RESUMEN

Cyclodextrins (CDs) are suitable drug carriers because of their doughnut-shaped cavities with hydrophilic outer and hydrophobic inner surfaces. Temperature-responsive CD-based drug carriers are expected to be one of the most promising candidates for drug delivery systems. In this study, we performed molecular dynamics simulations of the inclusion complex of ß-CD with cyclophosphamide (CP) at temperatures from 300 K to 400 K to investigate the temperature dependency of the release behaviour of CP and structural changes of ß-CD in an aqueous solution. We analysed the distance between the centres of mass of ß-CD and CP and the radius of gyration of ß-CD. The CP molecule was released from the ß-CD cavity at 400 K, whereas two different inclusion complexes, partially and completely, were observed at T < 400 K. ß-CD encapsulating a CP molecule had a more spherical shape and rigidity than ß-CD without a CP, and the rigidity of their inclusion complex decreased with increasing temperature. Our findings provide fundamental insights into the behaviours of the ß-CD/CP complex and drug release at the molecular level and can facilitate the development of new temperature-responsive drug delivery systems with CD nanocarriers triggered by localised temperature increases using focused ultrasound.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Simulación de Dinámica Molecular , Temperatura , Liberación de Fármacos , beta-Ciclodextrinas/química , Ciclodextrinas/química , Portadores de Fármacos/química , Solubilidad
2.
Soft Matter ; 19(34): 6480-6489, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37575055

RESUMEN

We investigate the self-assembly of amphiphilic nanocubes into finite-sized aggregates in equilibrium and under shear, using molecular dynamics (MD) simulations and kinetic Monte Carlo (KMC) calculations. These patchy nanoparticles combine both interaction and shape anisotropy, making them valuable models for studying folded proteins and DNA-functionalized nanoparticles. The nanocubes can self-assemble into various finite-sized aggregates ranging from rods to self-avoiding random walks, depending on the number and placement of the hydrophobic faces. Our study focuses on suspensions containing multi- and one-patch cubes, with their ratio systematically varied. When the binding energy is comparable to the thermal energy, the aggregates consist of only few cubes that spontaneously associate/dissociate. However, highly stable aggregates emerge when the binding energy exceeds the thermal energy. Generally, the mean aggregation number of the self-assembled clusters increases with the number of hydrophobic faces and decreases with increasing fraction of one-patch cubes. In sheared suspensions, the more frequent collisions between nanocube clusters lead to faster aggregation dynamics but also to smaller terminal steady-state mean cluster sizes. The results from the MD and KMC simulations are in excellent agreement for all investigated two-patch cases, whereas the three-patch cubes form systematically smaller clusters in the MD simulations compared to the KMC calculations due to finite-size effects and slow aggregation kinetics. By analyzing the rate kernels, we are able to identify the primary mechanisms responsible for (shear-induced) cluster growth and breakup. This understanding allows us to tune nanoparticle and process parameters to achieve desired cluster sizes and shapes.

3.
J Org Chem ; 88(7): 4848-4853, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36895086

RESUMEN

Irradiation on N-(ω-alkenyl)isocarbostyrils in the presence of an iridium photocatalyst by LEDs emitting 455 nm light gave the corresponding cyclobutane-fused benzo[b]quinolizine derivatives stereoselectively in high yields. Loading 1 mol % of the catalyst was enough to obtain high yields of the products in convenient reaction time in many cases. The reaction likely proceeds through stepwise [2 + 2] cycloaddition via a triplet biradical intermediate.

4.
J Chem Phys ; 157(11): 114506, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36137803

RESUMEN

Despite decades of extensive research, the behavior of confined liquids, particularly in the mixed/boundary lubrication regime, remains unelucidated. This can be attributed to several factors, including the difficulty to make direct experimental observations of the behavior of lubricant molecules under nonequilibrium conditions, the high computational cost of molecular simulations to reach steady state, and the low signal-to-noise ratio at extremely low shear rates corresponding to actual operating conditions. In this regard, we studied the correlation between the structure formation and shear viscosity of octamethylcyclotetrasiloxane confined between two mica surfaces in a mixed/boundary lubrication regime. Three different surface separations-corresponding to two-, three-, and five-layered structures-were considered to analyze the effect of confinement. The orientational distributions with one specific peak for n = 2 and two distributions, including a parallel orientation with the surface normal for n > 2, were observed at rest. The confined liquids exhibited a distinct shear-thinning behavior independent of surface separations for a relatively low shear rate, γ̇≲108s-1. However, the shear viscosities at γ̇≲108s-1 depended on the number of layered structures. Newtonian behavior was observed with further increase in the shear rate. Furthermore, we found a strong correlation between the degree of molecular orientation and the shear viscosity of the confined liquids. The magnitude of the shear viscosity of the confined liquids can primarily be determined by the degree of molecular orientation, and shear thinning originates from the vanishing of specific orientational distributions with increasing shear rate.

5.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955941

RESUMEN

Nanoparticles exhibit diverse self-assembly attributes and are expected to be applicable under unique settings. For instance, biomolecules can be sandwiched between dimer nanoparticles and detected by surface-enhanced Raman scattering. Controlling the gap between extremely close dimers and stably capturing the target molecule in the gap are crucial aspects of this strategy. Therefore, polymer-tethered nanoparticles (PTNPs), which show promise as high-performance materials that exhibit the attractive features of both NPs and polymers, were targeted in this study to achieve stable biomolecule sensing. Using coarse-grained molecular dynamics simulations, the dependence of the PTNP interactions on the length of the grafted polymer, graft density, and coverage ratio of a hydrophobic tether were examined. The results indicated that the smaller the tether length and graft density, the smaller was the distance between the PTNP surfaces (Rsurf). In contrast, Rsurf decreased as the coverage ratio of the hydrophobic surface (ϕ) increased. The sandwiching probability of the sensing target increased in proportion to the coverage ratio. At high ϕ values, the PTNPs aggregated into three or more particles, which hindered their sensing attributes. These results provide fundamental insight into the sensing applications of NPs and demonstrate the usefulness of PTNPs in sensing biomolecules.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Nanopartículas/química , Polímeros/química
6.
Soft Matter ; 17(15): 4047-4058, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725068

RESUMEN

In this study, a coarse-grained molecular simulation was performed to investigate the morphologies and phase diagrams of self-assembled polymer-tethered nanoparticles (NPs) confined in nanotubes (NTs). Unlike ordinary NPs, polymer-tethered NPs have two distinct characteristic lengths, which are key factors that determine their self-assembly. Herein, two distinct types of NT walls and three types of polymer-tethered NPs were considered: hydrophilic and hydrophobic walls, and hydrophilic, hydrophobic, and Janus surfaces. First, the qualitative phase diagrams of the axial pressure, Pz, versus the ratio of the NT radius to the NP radius, L, were derived. The results revealed that diverse self-assembled morphologies, which are not formed in non-tethered NPs, were observed in the polymer-tethered NPs. For example, three types of ordered structures with different structural characteristic lengths, depending on Pz, were obtained. In addition, the effect of the chemical nature of the polymer-tethered NP surface on the self-assembled morphology confined in NTs was investigated. Clusters of water molecules were formed, particularly in the hydrophobic polymer-tethered NPs, and these clusters caused the structural distortion of the NP. Moreover, in the polymer-tethered NPs with the Janus amphiphilic surface, the hydrophobic and hydrophilic polymer tethered NPs assembled in the axial direction to form an ordered structure, and a double-helix structure was formed at L = 3.0 in the hydrophobic NT. The results of these simulations indicate that the self-assembly behaviours of polymer-tethered NPs can be qualitatively predicted based on the chemical nature of the NT walls and the surface design of the polymer-tethered NP.

7.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299196

RESUMEN

The phenomenon of drag reduction (known as the "Toms effect") has many industrial and engineering applications, but a definitive molecular-level theory has not yet been constructed. This is due both to the multiscale nature of complex fluids and to the difficulty of directly observing self-assembled structures in nonequilibrium states. On the basis of a large-scale coarse-grained molecular simulation that we conducted, we propose a possible mechanism of turbulence suppression in surfactant aqueous solution. We demonstrate that maintaining sufficiently large micellar structures and a homogeneous radial distribution of surfactant molecules is necessary to obtain the drag-reduction effect. This is the first molecular-simulation evidence that a micellar structure is responsible for drag reduction in pipe flow, and should help in understanding the mechanisms underlying drag reduction by surfactant molecules under nonequilibrium conditions.


Asunto(s)
Tensoactivos/química , Agua/química , Simulación por Computador , Fricción , Micelas , Modelos Químicos , Simulación de Dinámica Molecular , Fenómenos Físicos , Viscosidad
8.
Langmuir ; 36(36): 10690-10698, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32804514

RESUMEN

The effects of the chemical nature of an interface are one of the key parameters which can affect self-assembly and rheological behavior. To date, several studies have reported self-assembled structures and rheological behaviors in the development of various functional materials. In this study, we investigated the self-assembly and viscosity behavior of aqueous surfactant solutions confined in three types of Janus amphiphilic nanotubes (JANTs), which have two, four, and eight sequential domains, respectively, using molecular simulation. We found that the viscosity behavior depends on the surfactant concentration and the chemical nature of the wall surface. For instance, although the concentration levels of the surfactants are the same (c = 10%), completely different viscosity behaviors were observed in the two sequential domains (Newtonian-like) and the four and eight sequential domains (strong shear-thinning) of the JANTs. Our simulations demonstrated how the rheological properties of aqueous surfactant solutions, including viscosity and velocity profiles, can be controlled by the chemical nature of the JANT wall surface, effect of confinement, and their self-assembly structures. Considering the foregoing, we hope that our study offers new knowledge on nanofluid systems.

9.
Langmuir ; 36(47): 14214-14223, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33207880

RESUMEN

We investigate the structure and rheological properties of dilute colloid-polymer mixtures at rest and under shear via molecular simulations that take into account hydrodynamic interactions. Mixtures of amphiphilic Janus colloids (JCs) and hydrophobic/amphiphilic polymers are considered for various solvent qualities and polymer concentrations. Free polymers, small polymer droplets, and hybrid aggregates coexist in mixtures with slightly hydrophobic homopolymers. As the solvent quality worsens, all polymers aggregate into small droplets, covered and stabilized by the JCs. In mixtures with amphiphilic polymers, we observe the coexistence of free polymers, purely polymeric micelles, and hybrid aggregates. At low shear rates, all mixtures exhibit a Newtonian-like response with intrinsic shear viscosities that are up to 2 times as large as of pure suspensions of nonadsorbing colloids at the same concentration. Furthermore, the mean aggregation number increases slightly due to the flow-enhanced collision of aggregates. At larger shear rates, however, the aggregates break up, the polymers align in the flow direction, and the mixtures exhibit shear-thinning. This shear-induced breakup occurs at stronger shear compared to pure JC suspensions, indicating that the adsorbed polymers reinforce the hybrid aggregates.

10.
Soft Matter ; 16(2): 476-486, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31803898

RESUMEN

We study the structure formation and flow properties of colloidal dispersions comprised of Janus spheres, Janus spherocylinders, and their mixtures, using hybrid molecular dynamics simulations that take into account hydrodynamic interactions. We systematically vary the Janus balance and the shape anisotropy of the particles, and explore a range of colloid volume fractions in the liquid regime of the phase diagram. At rest, Janus spheres with small hydrophobic patches form spherical micelles for all investigated colloid concentrations. In contrast, Janus spheres with an entirely hydrophobic hemisphere aggregate to larger worm-like micelles and network-like structures. Janus spherocylinders exhibit a similar self-assembly behavior. At small and intermediate shear, we observe deformation and rearrangement of the micelles, accompanied by a Newtonian-like rheology with slightly higher shear viscosity compared to homoparticle dispersions at the same concentration. As the shear rate is increased further, the micelles eventually break up into small dimers and free particles, causing a distinct shear-thinning of the dispersions. The network-like structures exhibit a similar flow behavior at high shear rates, but for weak shear we find an almost threefold increase of the shear viscosity and a distinct shear-thinning behavior due to the fracturing of the intertwined networks. In general, we identify a strong correlation between the size of the aggregates and the rheology of the dispersions, allowing for the determination of dynamic properties solely based on structural information.

11.
J Org Chem ; 85(23): 15717-15725, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33190476

RESUMEN

The [2+2] photocycloaddition of alkenyl-tethered 1H-pyrrolo[2,3-b]pyridine derivatives sensitized with 3',4'-dimethoxyacetophenone under irradiation by a high-pressure mercury lamp through Pyrex glass was dramatically accelerated by the addition of Lewis acids, preferably Mg(OTf)2, to give the products stereoselectively in high yields. The reaction without a Lewis acid gave only small amounts of the [2+2] cycloaddition products. Conformational fixation of the substrates by coordination with a Lewis acid was presumed to facilitate the cycloaddition.

12.
Phys Chem Chem Phys ; 22(29): 16896-16904, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666995

RESUMEN

Blue phases are three-dimensional self-assembly structures of liquid crystals with a lattice of line defects. They have attracted considerable interest as photonic materials. It is well known that blue phases occur in cholesteric liquid crystals (CLCs) under certain thermodynamic conditions; however, recent studies have indicated that confining surfaces may induce distinctive structural changes. For example, in a previous study, a quasi-two-dimensional (Q2D) confinement system was investigated with the aid of numerical calculations, and a stable Q2D Skyrmion structure was attained. Here, we performed molecular simulations to investigate the CLC phase behavior at the molecular scale for a quasi-one-dimensional (Q1D) nanotube system. Various morphological behaviors of CLCs were observed by changing the temperature and the radius of the nanotubes. In particular, we discovered a self-assembled structure with cylindrical (or ring-like) defects rather than lines by introducing a novel local orientation analysis. Our simulation results show that the self-assembly of CLCs offers a guide to control the intensity in Q1D systems and fundamental knowledge for their application to optical devices.

13.
Phys Chem Chem Phys ; 20(44): 28155-28161, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30387788

RESUMEN

The lipid bilayer membrane facilitates various biological reactions and is thus an essential structure that sustains all higher forms of life. The unique local environment of the lipid bilayer plays critical roles for the diffusion of biomolecules as well as water molecules in biological reactions. Although fluctuation of the cell membrane is expected to allow for the transport of some water molecules, the flip-flop of lipid molecules corresponds to lipid transport between membrane leaflets, and is considered to be an important process to regulate the lipid composition of biological membranes. However, the relationship between these flip-flop phenomena and surrounding water molecules remains poorly understood. We hypothesized that the flip-flop is caused by water molecules permeating through the cell membrane. To test this hypothesis, we used millisecond-order coarse-grained molecular simulations (dissipative particle dynamics) to investigate the distance between water molecules and lipid molecules depending on the position of the lipid molecule. The results clearly showed that water molecules affect the flip-flop motion in the early stage, but have minimal contribution to the subsequent behavior. Moreover, based on the results of dissipative particle dynamics simulation, we computed several first-passage-time (FPT) quantities to describe the detailed dynamics of water permeation. We modeled arrangements in the middle of the flip-flop process, which were compared with the arrangement without lipid molecules. Overall, our results indicate that lipid molecules located both in perpendicular and parallel arrangements largely affect water permeation. These findings provide new insight into the detailed relationship between water permeation and the flip-flop motion.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Agua/química , Transporte Biológico , Membrana Celular/química , Difusión , Cinética , Movimiento (Física) , Permeabilidad , Propiedades de Superficie , Termodinámica
14.
Angew Chem Int Ed Engl ; 57(5): 1386-1389, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29205740

RESUMEN

The asymmetric hydrogenation of aromatic γ- and δ-keto esters into optically active hydroxy esters or diols under the catalysis of a novel DIPSkewphos/3-AMIQ-RuII complex was studied. Under the optimized conditions (8 atm H2 , Ru complex/t-C4 H9 OK=1:3.5, 25 °C) the γ- and δ-hydroxy esters (including γ-lactones) were obtained quantitatively with 97-99 % ee. When the reaction was conducted under somewhat harsh conditions (20 atm H2 , [t-C4 H9 OK]=50 mm, 40 °C), the 1,4- and 1,5-diols were obtained predominantly with 95-99 % ee. The reactivity of the ester group was notably dependent on the length of the carbon spacer between the two carbonyl moieties of the substrate. The reaction of ß- and ϵ-keto esters selectively afforded the hydroxy esters regardless of the reaction conditions. This catalyst system was applied to the enantioselective and regioselective (for one of the two ester groups) hydrogenation of a γ-ϵ-diketo diester into a trihydroxy ester.

15.
Chemistry ; 23(37): 8806-8809, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28407316

RESUMEN

Double asymmetric hydrogenation of linear ß,ß-disubstituted α,ß-unsaturated ketones catalyzed by the DM-SEGPHOS/DMAPEN/RuII complex with t-C4 H9 OK afforded the γ-substituted secondary alcohols in high diastereo- and enantioselectivities. Some mechanistic experiments suggested that two different reactive species, type (I) and (II), were reversibly formed in this catalytic system: Type (I) with the diamine ligand DMAPEN enantioselectively hydrogenated the enones into the chiral allylic alcohols, and type (II) without the diamine ligand diastereoselectively hydrogenated the allylic alcohols into the γ-substituted secondary alcohols. This dual catalysis protocol was successfully applied to the reaction of a variety of aliphatic- and aromatic-substituted enone substrates.

16.
Langmuir ; 33(3): 736-743, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28056173

RESUMEN

Janus nanoparticles (JNPs) have received considerable attention because of their characteristic physical properties that are due to more than two distinct chemical or physical surfaces. We investigated the rheological properties of a JNP solution in the nanotubes using a computer simulation. Prediction and control of the self-assembly of colloidal nanoparticles is of critical importance in materials chemistry and engineering. Herein, we show computer simulation evidence of a new type of velocity profile and a hallmark shear-thinning behavior by confining a JNP solution to a nanotube with hydrophobic and hydrophilic wall surfaces. We derived curves of the shear rate versus the viscosity for two quasi-one-dimensional nanotube systems including diluted and concentrated volume fractions of JNP solutions. For the diluted system, under relatively low shear rates, shear-thinning behavior with a moderate slope or behavior similar to a Newtonian fluid is observed because of the clustering of JNPs. Under relatively high shear rates, the slope of shear thinning changes markedly because the self-assembled structures are rearranged. Moreover, for concentrated systems, when the nanotube wall is hydrophobic, new characteristic velocity profiles that have not been reported before are observed. Our simulation offers a guide to control the rheological properties of JNP solutions by the chemical patterns on the surfaces of nanochannels, the effect of confinement, and the self-assembled structure.

17.
J Org Chem ; 82(14): 7628-7636, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28653840

RESUMEN

Aza-Diels-Alder-type cycloaddition reactions between a range of N-arylimines and functionalized alkenes were effectively catalyzed by the Cr(III)/bipyridine complex under irradiation of blue light, to give the corresponding 1,2,3,4-tetrahydroquinoline derivatives in high yields with excellent diastereoselectivity. Typically, the reaction of benzylideneaniline with 1-vinyl-2-pyrrolidinone proceeded smoothly with a substrate-to-catalyst molar ratio (S/C) of 1000 and completed within 4 h at room temperature (20-25 °C), affording the cycloaddition product in 97% yield.

18.
Chem Rec ; 16(6): 2797-2815, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27555568

RESUMEN

Catalytic asymmetric hydrogenation of ketones through the "metal-ligand cooperative mechanism" has been improved in terms of the efficiency, stereoselectivity, and scope of substrates by varying the arrangement of the catalyst structure and reaction conditions. Imino compounds are also smoothly converted to the optically active amines with appropriate catalysts. This type of catalyst exhibits excellent performance on the asymmetric isomerization of primary allylic alcohols into the optically active aldehydes. This personal account describes recent progress on these topics.

19.
Soft Matter ; 12(2): 378-85, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26497536

RESUMEN

We performed molecular simulations to investigate the morphologies and phase diagrams of self-assembled diblock Janus nanoparticles (JNPs) confined in nanotubes. A JNP is a unique anisotropic nanoparticle, which typically has more than two distinct surfaces, each with different properties. We derived qualitative phase diagrams of axial pressure versus the ratio of the diameter of the nanoparticle and the nanotube. Three distinct types of nanotube walls were considered: hydrophobic, hydrophilic, and hydroneutral. We observed diverse morphologies in JNP solutions, many of which have not been observed in bulk solutions. We also compared the self-assembled structures of diblock and triblock patchy particles. Under weak confinement, significant differences were observed between the different JNP designs. The orientation ordering and self-assembly behaviours of the JNPs can be qualitatively predicted based on the chemical nature of the nanotube wall and the JNP design.

20.
Phys Chem Chem Phys ; 18(28): 19426-32, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27378100

RESUMEN

Researchers have studied the origin of life and the process of evolution on early Earth for decades. However, we lack a comprehensive understanding of biogenesis, because there are many stages in the formation and growth of the first cell. We investigate the self-replication processes of coacervate protocells using computer simulations of single-chain lipid and phospholipid aqueous mixtures. Based on a morphological phase diagram, we develop a model of prebiotic self-replication driven by only environmental factors (i.e. temperature and lipid concentrations) without any external force. Moreover, we investigate high concentration structures during the process of self-replication. These structures have an advantage in fusion and repair of cell membranes. Therefore, lipid hot spots may have existed in primordial soup.


Asunto(s)
Membrana Celular/química , Lípidos de la Membrana/química , Fosfolípidos/química , Células Artificiales/metabolismo , Simulación por Computador , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA