Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 114(10): 1619-1632, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34338933

RESUMEN

Fusarium oxysporum f. sp. lycopersici is an important plant pathogen that has been used to understand the virulence mechanisms that soil inhabiting fungi exhibit during the infection process. In F. oxysporum many of the virulence factors are secreted, and the secretion process requires the formation of vesicles. Arf family members, represented by Arf (ADP- Ribosylation Factor), Arl (Arf-like), and Sar (Secretion-associated and Ras-related) proteins, are involved in the vesicle creation process. In this study we identified the Arf family members in F. oxysporum f. sp. lycopersici, which includes seven putative proteins: Arf1, Arf3, Arl1 through Arl3, Arl8B, and Sar1. Quantification of the mRNA levels of each arf encoding gene revealed that the highest expression corresponds to arf1 in all tested conditions. The phylogenetic analysis revealed that no other Arf1 paralogue, such as Arf2 from yeast, is present in F. oxysporum f. sp. lycopersici. The essential function suggested of Arf1 in F. oxysporum f. sp. lycopersici was corroborated experimentally when, after several attempts, it was impossible to obtain a knockout mutant in arf1. Moreover, arl3 mRNA levels increased significantly when plant tissue was added as a sole carbon source, suggesting that the product of these genes could play pivotal roles during plant infection, the corresponding mutant ∆arl3 was less virulent compared to the wild-type strain. These results describe the role of arl3 as a critical regulator of the virulence in F. oxysporum f. sp. lycopersici and stablish a framework for the arf family members to be studied in deeper details in this phytopathogen.


Asunto(s)
Fusarium , Solanum lycopersicum , Fusarium/genética , Filogenia , Enfermedades de las Plantas , Virulencia/genética
2.
Fungal Genet Biol ; 129: 40-51, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31014992

RESUMEN

Mucor circinelloides is an etiologic agent of mucormycosis, a fungal infection produced by Mucorales often associated with mortality due to unavailability of antifungal drugs. Arl proteins belong to the Arf family and are involved in vesicle trafficking and tubulin assembly. This study identified two Arl (Arf-like)-encoding genes, arl1 and arl2, in M. circinelloides and explored their function in morphogenesis, virulence, and antifungal susceptibility. Although Arl1 and Arl2 proteins shared 55% amino acid sequence identity, arl1 and arl2 genes showed distinct transcriptional expression patterns. arl1 was expressed at higher levels than arl2 and induced in mycelia, suggesting a role in morphological transitions. Disruption of the arl1 and arl2 genes led to heterokaryon (Δarl1(+)(-)) and homokaryon (Δarl2) genotypes, respectively. The incapacity to generate homokaryon mutants for arl1 suggested that it is essential for growth of M. circinelloides. Deletion of each gene reduced the expression of the other, suggesting the existence of a positive cross-regulation between them. Thus, deletion of arl2 resulted in a ~60% reduction of arl1 expression, whereas the Δarl1(+)(-) showed ∼90% reduction of arl1 expression. Mutation of arl2 showed no phenotype or a mild phenotype between Δarl1(+)(-) and wild-type (WT), suggesting that all observed phenotypes in both mutant strains corresponded to arl1 low expression. The Δarl1(+)(-) produced a small amount of spores that showed increased sensitivity to dodecyl-sulfate and azoles, suggesting a defect in the cell wall that was further supported by decrease in saccharide content. These defects in the cell wall were possibly originated by abnormal vesicle trafficking since FM4-64 staining of both mutants Δarl1(+)(-) and Δarl2 revealed less well-localized endosomes compared to the WT. Moreover, aberrant vesicle trafficking may be responsible for the secretion of specific virulence-related proteins since cell-free medium from Δarl1(+)(-) were found to increase killing of Caenorhabditis elegans compared to WT.


Asunto(s)
Antifúngicos/farmacología , Proteínas Fúngicas/genética , Mucor/efectos de los fármacos , Mucor/genética , Genotipo , Mucor/patogenicidad , Mutación , Filogenia , Transporte de Proteínas , Esporas Fúngicas/patogenicidad , Proteínas de Transporte Vesicular/genética , Virulencia
3.
Antonie Van Leeuwenhoek ; 111(2): 285-295, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28956188

RESUMEN

The genome sequence of the plant pathogen Fusarium oxysporum f. sp. lycopersici contains a single gene encoding a predicted poly(ADP-ribose) glycohydrolase (FOXG_05947.2, PARG). Here, we assessed whether this gene has a role as a global regulator of DNA repair or in virulence as an ADP ribosylating toxin homologue of bacteria. The PARG protein was purified after expressing its encoding gene in Escherichia coli. Its inhibition by 6,9-diamino-2-ethoxyacridine lactate monohydrate and tannins was similar to its human orthologue that is involved in DNA repair. A deletion strain of F. oxysporum f. sp. lycopersici showed no growth defects and was not affected in pathogenicity. Together, our results indicate that the PARG protein of F. oxysporum f. sp. lycopersici is involved in DNA repair and does not act in pathogenicity as an effector.


Asunto(s)
Fusarium/química , Fusarium/genética , Glicósido Hidrolasas/genética , Secuencia de Aminoácidos , Daño del ADN , Reparación del ADN , Fusarium/clasificación , Fusarium/aislamiento & purificación , Genes Fúngicos , Genoma Fúngico , Glicósido Hidrolasas/química , Mutación , Análisis de Secuencia de ADN , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA