Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 52(51): 9375-84, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24251446

RESUMEN

Tuberculosis remains a global health emergency that calls for treatment regimens directed at new targets. Here we explored lipoamide dehydrogenase (Lpd), a metabolic and detoxifying enzyme in Mycobacterium tuberculosis (Mtb) whose deletion drastically impairs Mtb's ability to establish infection in the mouse. Upon screening more than 1.6 million compounds, we identified N-methylpyridine 3-sulfonamides as potent and species-selective inhibitors of Mtb Lpd affording >1000-fold selectivity versus the human homologue. The sulfonamides demonstrated low nanomolar affinity and bound at the lipoamide channel in an Lpd-inhibitor cocrystal. Their selectivity could be attributed, at least partially, to hydrogen bonding of the sulfonamide amide oxygen with the species variant Arg93 in the lipoamide channel. Although potent and selective, the sulfonamides did not enter mycobacteria, as determined by their inability to accumulate in Mtb to effective levels or to produce changes in intracellular metabolites. This work demonstrates that high potency and selectivity can be achieved at the lipoamide-binding site of Mtb Lpd, a site different from the NAD⁺/NADH pocket targeted by previously reported species-selective triazaspirodimethoxybenzoyl inhibitors.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Sulfonamidas/farmacología , Ácido Tióctico/análogos & derivados , Antituberculosos/efectos adversos , Antituberculosos/química , Arginina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencenoacetamidas/efectos adversos , Bencenoacetamidas/química , Bencenoacetamidas/farmacología , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Moduladores del Transporte de Membrana/efectos adversos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Sulfonamidas/efectos adversos , Sulfonamidas/química , Ácido Tióctico/metabolismo
2.
ACS Infect Dis ; 7(2): 435-444, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33527832

RESUMEN

Tuberculosis remains a leading cause of death from a single bacterial infection worldwide. Efforts to develop new treatment options call for expansion into an unexplored target space to expand the drug pipeline and bypass resistance to current antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for mycobacterial growth and survival in mice. Sulfonamide analogs were previously identified as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase in vitro but lacked activity against whole mycobacteria. Here we present the development of analogs with improved permeability, potency, and selectivity, which inhibit the growth of Mycobacterium tuberculosis in axenic culture on carbohydrates and within mouse primary macrophages. They increase intrabacterial pyruvate levels, supporting their on-target activity within mycobacteria. Distinct modalities of binding between the mycobacterial and human enzymes contribute to improved potency and hence selectivity through induced-fit tight binding interactions within the mycobacterial but not human enzyme, as indicated by kinetic analysis and crystallography.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antibacterianos/uso terapéutico , Dihidrolipoamida Deshidrogenasa/metabolismo , Humanos , Cinética , Ratones , Mycobacterium tuberculosis/metabolismo , Tuberculosis/tratamiento farmacológico
3.
Biochemistry ; 49(8): 1616-27, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20078138

RESUMEN

Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD(+), and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 A by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD(+) binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD(+) but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD(+) complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD(+) nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.


Asunto(s)
Antituberculosos/química , Antituberculosos/metabolismo , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Dihidrolipoamida Deshidrogenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Animales , Antituberculosos/efectos adversos , Antituberculosos/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/genética , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Macrófagos/citología , Ratones , Modelos Biológicos , Estructura Molecular , Mutagénesis Sitio-Dirigida , NAD/química , NAD/metabolismo , Relación Estructura-Actividad , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/metabolismo
4.
J Cell Biol ; 164(1): 79-88, 2004 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-14699088

RESUMEN

A new functional class of SNAREs, designated inhibitory SNAREs (i-SNAREs), is described here. An i-SNARE inhibits fusion by substituting for or binding to a subunit of a fusogenic SNAREpin to form a nonfusogenic complex. Golgi-localized SNAREs were tested for i-SNARE activity by adding them as a fifth SNARE together with four other SNAREs that mediate Golgi fusion reactions. A striking pattern emerges in which certain subunits of the cis-Golgi SNAREpin function as i-SNAREs that inhibit fusion mediated by the trans-Golgi SNAREpin, and vice versa. Although the opposing distributions of the cis- and trans-Golgi SNAREs themselves could provide for a countercurrent fusion pattern in the Golgi stack, the gradients involved would be strongly sharpened by the complementary countercurrent distributions of the i-SNAREs.


Asunto(s)
Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular , Sitios de Unión/fisiología , Aparato de Golgi/ultraestructura , Membranas Intracelulares/química , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Unión Proteica/fisiología , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Proteínas SNARE , Transducción de Señal/fisiología , Red trans-Golgi/fisiología
5.
Chem Biol ; 17(4): 323-32, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20416504

RESUMEN

Activity based metabolomic profiling (ABMP) allows unbiased discovery of enzymatic activities encoded by genes of unknown function, and applies liquid-chromatography mass spectrometry (LC-MS) to analyze the impact of a recombinant enzyme on the homologous cellular extract as a physiologic library of potential substrates and products. The Mycobacterium tuberculosis protein Rv1248c was incompletely characterized as a thiamine diphosphate-dependent alpha-ketoglutarate decarboxylase. Here, recombinant Rv1248c catalyzed consumption of alpha-ketoglutarate in a mycobacterial small molecule extract with matched production of 5-hydroxylevulinate (HLA) in a reaction predicted to require glyoxylate. As confirmed using pure substrates by LC-MS, (1)H-NMR, chemical trapping, and intracellular metabolite profiling, Rv1248c catalyzes C-C bond formation between the activated aldehyde of alpha-ketoglutarate and the carbonyl of glyoxylate to yield 2-hydroxy-3-oxoadipate (HOA), which decomposes to HLA. Thus, Rv1248c encodes an HOA synthase.


Asunto(s)
Metabolómica/métodos , Mycobacterium tuberculosis/enzimología , Oxo-Ácido-Liasas/metabolismo , Transferasas de Aldehído-Cetona , Mycobacterium tuberculosis/genética , Resonancia Magnética Nuclear Biomolecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA