Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 623(7988): 702-703, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37993577
2.
Nanotechnology ; 29(26): 265205, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29620015

RESUMEN

Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

3.
Adv Mater ; 36(24): e2312008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501999

RESUMEN

Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

4.
ACS Nano ; 15(8): 12935-12944, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34279916

RESUMEN

The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current-voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11-20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA