Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 103(1): 107-16, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18556576

RESUMEN

Ischemic heart disease is characterized chronically by a healed infarct, foci of myocardial scarring, cavitary dilation, and impaired ventricular performance. These alterations can only be reversed by replacement of scarred tissue with functionally competent myocardium. We tested whether cardiac progenitor cells (CPCs) implanted in proximity of healed infarcts or resident CPCs stimulated locally by hepatocyte growth factor and insulin-like growth factor-1 invade the scarred myocardium and generate myocytes and coronary vessels improving the hemodynamics of the infarcted heart. Hepatocyte growth factor is a powerful chemoattractant of CPCs, and insulin-like growth factor-1 promotes their proliferation and survival. Injection of CPCs or growth factors led to the replacement of approximately 42% of the scar with newly formed myocardium, attenuated ventricular dilation and prevented the chronic decline in function of the infarcted heart. Cardiac repair was mediated by the ability of CPCs to synthesize matrix metalloproteinases that degraded collagen proteins, forming tunnels within the fibrotic tissue during their migration across the scarred myocardium. New myocytes had a 2n karyotype and possessed 2 sex chromosomes, excluding cell fusion. Clinically, CPCs represent an ideal candidate cell for cardiac repair in patients with chronic heart failure. CPCs may be isolated from myocardial biopsies and, following their expansion in vitro, administered back to the same patients avoiding the adverse effects associated with the use of nonautologous cells. Alternatively, growth factors may be delivered locally to stimulate resident CPCs and promote myocardial regeneration. These forms of treatments could be repeated over time to reduce progressively tissue scarring and expand the working myocardium.


Asunto(s)
Cicatriz/terapia , Insuficiencia Cardíaca/terapia , Infarto del Miocardio/terapia , Miocardio , Trasplante de Células Madre , Células Madre , Animales , Movimiento Celular/efectos de los fármacos , Enfermedad Crónica , Cicatriz/etiología , Cicatriz/metabolismo , Cicatriz/patología , Colágeno/metabolismo , Colagenasas/biosíntesis , Diploidia , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Hemodinámica , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Regeneración/efectos de los fármacos , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Células Madre/patología , Trasplante Homólogo , Disfunción Ventricular/etiología , Disfunción Ventricular/metabolismo , Disfunción Ventricular/patología , Disfunción Ventricular/terapia
2.
Circ Res ; 101(4): 387-99, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17601802

RESUMEN

The recognition that the adult heart continuously renews its myocyte compartment raises the possibility that the age and lifespan of myocytes does not coincide with the age and lifespan of the organ and organism. If this were the case, myocyte turnover would result at any age in a myocardium composed by a heterogeneous population of parenchymal cells which are structurally integrated but may contribute differently to myocardial performance. To test this hypothesis, left ventricular myocytes were isolated from mice at 3 months of age and the contractile, electrical, and calcium cycling characteristics of these cells were determined together with the expression of the senescence-associated protein p16(INK4a) and telomere length. The heart was characterized by the coexistence of young, aged, and senescent myocytes. Old nonreplicating, p16(INK4a)-positive, hypertrophied myocytes with severe telomeric shortening were present together with young, dividing, p16(INK4a)-negative, small myocytes with long telomeres. A class of myocytes with intermediate properties was also found. Physiologically, evidence was obtained in favor of the critical role that action potential (AP) duration and I(CaL) play in potentiating Ca(2+) cycling and the mechanical behavior of young myocytes or in decreasing Ca(2+) transients and the performance of senescent hypertrophied cells. The characteristics of the AP appeared to be modulated by the transient outward K(+) current I(to) which was influenced by the different expression of the K(+) channels subunits. Collectively, these observations at the physiological and structural cellular level document that by necessity the heart has to constantly repopulate its myocyte compartment to replace senescent poorly contracting myocytes with younger more efficient cells. Thus, cardiac homeostasis and myocyte turnover regulate cardiac function.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Corazón/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Linaje de la Célula/fisiología , Tamaño de la Célula , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Homeostasis/fisiología , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/fisiología , Potasio/metabolismo , Células Madre/citología , Células Madre/fisiología , Telómero/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA