Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100052

RESUMEN

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/ultraestructura , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Péptidos/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Relación Estructura-Actividad , Factor 5A Eucariótico de Iniciación de Traducción
2.
Mol Cell ; 61(1): 3-14, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26585390

RESUMEN

Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Animales , Antibacterianos/química , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Humanos , Modelos Moleculares , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Relación Estructura-Actividad
3.
J Am Chem Soc ; 145(2): 851-863, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36603206

RESUMEN

Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent.


Asunto(s)
Mycobacterium tuberculosis , Myxococcales , Antibacterianos/química , Ribosomas/metabolismo , Biosíntesis de Proteínas
4.
Nature ; 541(7638): 546-549, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-27906161

RESUMEN

In bacteria, ribosomes stalled on truncated mRNAs that lack a stop codon are rescued by the transfer-messenger RNA (tmRNA), alternative rescue factor A (ArfA) or ArfB systems. Although tmRNA-ribosome and ArfB-ribosome structures have been determined, how ArfA recognizes the presence of truncated mRNAs and recruits the canonical termination release factor RF2 to rescue the stalled ribosomes is unclear. Here we present a cryo-electron microscopy reconstruction of the Escherichia coli 70S ribosome stalled on a truncated mRNA in the presence of ArfA and RF2. The structure shows that the C terminus of ArfA binds within the mRNA entry channel on the small ribosomal subunit, and explains how ArfA distinguishes between ribosomes that bear truncated or full-length mRNAs. The N terminus of ArfA establishes several interactions with the decoding domain of RF2, and this finding illustrates how ArfA recruits RF2 to the stalled ribosome. Furthermore, ArfA is shown to stabilize a unique conformation of the switch loop of RF2, which mimics the canonical translation termination state by directing the catalytically important GGQ motif within domain 3 of RF2 towards the peptidyl-transferase centre of the ribosome. Thus, our structure reveals not only how ArfA recruits RF2 to the ribosome but also how it promotes an active conformation of RF2 to enable translation termination in the absence of a stop codon.


Asunto(s)
Codón de Terminación , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Ribosomas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/ultraestructura , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura
5.
Mol Cell ; 56(3): 446-452, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25306253

RESUMEN

During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site, leading to inhibition of peptide bond formation and translation arrest.


Asunto(s)
Eritromicina/química , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Proteínas Bacterianas/química , Dominio Catalítico , Microscopía por Crioelectrón , Modelos Moleculares , Fragmentos de Péptidos/química , Unión Proteica , Señales de Clasificación de Proteína , Estructura Cuaternaria de Proteína , Ribosomas/fisiología
6.
Trends Biochem Sci ; 42(8): 669-680, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28629612

RESUMEN

Ribosomes that translate mRNAs lacking stop codons become stalled at the 3' end of the mRNA. Recycling of these stalled ribosomes is essential for cell viability. In bacteria three ribosome rescue systems have been identified so far, with the most ubiquitous and best characterized being the trans-translation system mediated by transfer-messenger RNA (tmRNA) and small protein B (SmpB). The two additional rescue systems present in some bacteria employ alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent structures have revealed how ArfA mediates ribosome rescue by recruiting the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs. This now provides us with the opportunity to compare and contrast the available structures of all three bacterial ribosome rescue systems.


Asunto(s)
Bacterias/metabolismo , Ribosomas/metabolismo , Bacterias/genética , Conformación de Ácido Nucleico , Ribosomas/química
7.
EMBO J ; 36(14): 2061-2072, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28468753

RESUMEN

Under stress conditions, such as nutrient deprivation, bacteria enter into a hibernation stage, which is characterized by the appearance of 100S ribosomal particles. In Escherichia coli, dimerization of 70S ribosomes into 100S requires the action of the ribosome modulation factor (RMF) and the hibernation-promoting factor (HPF). Most other bacteria lack RMF and instead contain a long form HPF (LHPF), which is necessary and sufficient for 100S formation. While some structural information exists as to how RMF and HPF mediate formation of E. coli 100S (Ec100S), structural insight into 100S formation by LHPF has so far been lacking. Here we present a cryo-EM structure of the Bacillus subtilis hibernating 100S (Bs100S), revealing that the C-terminal domain (CTD) of the LHPF occupies a site on the 30S platform distinct from RMF Moreover, unlike RMF, the BsHPF-CTD is directly involved in forming the dimer interface, thereby illustrating the divergent mechanisms by which 100S formation is mediated in the majority of bacteria that contain LHPF, compared to some γ-proteobacteria, such as E. coli.


Asunto(s)
Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/metabolismo , Dimerización , Proteínas de Choque Térmico/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica
8.
Nucleic Acids Res ; 45(5): 2887-2896, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986857

RESUMEN

Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA.


Asunto(s)
Proteínas de Cloroplastos/química , Cloroplastos/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Spinacia oleracea/química , Sitios de Unión , Proteínas de Cloroplastos/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Estabilidad del ARN , ARN Ribosómico/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(27): 7527-32, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27330110

RESUMEN

The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Oligosacáridos/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli , Datos de Secuencia Molecular , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Imagen Individual de Molécula
10.
Nucleic Acids Res ; 44(13): 6471-81, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27226493

RESUMEN

Under stress conditions, such as nutrient starvation, deacylated tRNAs bound within the ribosomal A-site are recognized by the stringent factor RelA, which converts ATP and GTP/GDP to (p)ppGpp. The signaling molecules (p)ppGpp globally rewire the cellular transcriptional program and general metabolism, leading to stress adaptation. Despite the additional importance of the stringent response for regulation of bacterial virulence, antibiotic resistance and persistence, structural insight into how the ribosome and deacylated-tRNA stimulate RelA-mediated (p)ppGpp has been lacking. Here, we present a cryo-EM structure of RelA in complex with the Escherichia coli 70S ribosome with an average resolution of 3.7 Å and local resolution of 4 to >10 Å for RelA. The structure reveals that RelA adopts a unique 'open' conformation, where the C-terminal domain (CTD) is intertwined around an A/T-like tRNA within the intersubunit cavity of the ribosome and the N-terminal domain (NTD) extends into the solvent. We propose that the open conformation of RelA on the ribosome relieves the autoinhibitory effect of the CTD on the NTD, thus leading to stimulation of (p)ppGpp synthesis by RelA.


Asunto(s)
Nucleótidos de Guanina/química , Ligasas/química , ARN de Transferencia/química , Ribosomas/química , Escherichia coli/química , Escherichia coli/genética , GTP Pirofosfoquinasa/química , GTP Pirofosfoquinasa/genética , Regulación Bacteriana de la Expresión Génica , Nucleótidos de Guanina/biosíntesis , Ligasas/genética , Conformación Molecular , ARN de Transferencia/genética , Ribosomas/genética
11.
Nucleic Acids Res ; 44(5): 2429-38, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26792896

RESUMEN

Proline-rich antimicrobial peptides (PrAMPs) produced as part of the innate immune response of animals, insects and plants represent a vast, untapped resource for the treatment of multidrug-resistant bacterial infections. PrAMPs such as oncocin or bactenecin-7 (Bac7) interact with the bacterial ribosome to inhibit translation, but their supposed specificity as inhibitors of bacterial rather than mammalian protein synthesis remains unclear, despite being key to developing drugs with low toxicity. Here, we present crystal structures of the Thermus thermophilus 70S ribosome in complex with the first 16 residues of mammalian Bac7, as well as the insect-derived PrAMPs metalnikowin I and pyrrhocoricin. The structures reveal that the mammalian Bac7 interacts with a similar region of the ribosome as insect-derived PrAMPs. Consistently, Bac7 and the oncocin derivative Onc112 compete effectively with antibiotics, such as erythromycin, which target the ribosomal exit tunnel. Moreover, we demonstrate that Bac7 allows initiation complex formation but prevents entry into the elongation phase of translation, and show that it inhibits translation on both mammalian and bacterial ribosomes, explaining why this peptide needs to be stored as an inactive pro-peptide. These findings highlight the need to consider the specificity of PrAMP derivatives for the bacterial ribosome in future drug development efforts.


Asunto(s)
Antibacterianos/química , Péptidos Cíclicos/química , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Sitios de Unión , Unión Competitiva , Bovinos , Cristalografía por Rayos X , Eritromicina/química , Eritromicina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Heterópteros/química , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos Cíclicos/farmacología , Unión Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Especificidad de la Especie , Thermus thermophilus/química
12.
Proc Natl Acad Sci U S A ; 112(17): 5401-6, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870267

RESUMEN

Ribosome protection proteins (RPPs) confer resistance to tetracycline by binding to the ribosome and chasing the drug from its binding site. Current models for RPP action are derived from 7.2- to 16-Å resolution structures of RPPs bound to vacant or nontranslating ribosomes. Here we present a cryo-electron microscopy reconstruction of the RPP TetM in complex with a translating ribosome at 3.9-Å resolution. The structure reveals the contacts of TetM with the ribosome, including interaction between the conserved and functionally critical C-terminal extension of TetM with a unique splayed conformation of nucleotides A1492 and A1493 at the decoding center of the small subunit. The resolution enables us to unambiguously model the side chains of the amino acid residues comprising loop III in domain IV of TetM, revealing that the tyrosine residues Y506 and Y507 are not responsible for drug-release as suggested previously but rather for intrafactor contacts that appear to stabilize the conformation of loop III. Instead, Pro509 at the tip of loop III is located directly within the tetracycline binding site where it interacts with nucleotide C1054 of the 16S rRNA, such that RPP action uses Pro509, rather than Y506/Y507, to directly dislodge and release tetracycline from the ribosome.


Asunto(s)
Proteínas Bacterianas/química , Enterococcus faecalis/química , Biosíntesis de Proteínas , Ribosomas/ultraestructura , Resistencia a la Tetraciclina , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
13.
Amino Acids ; 49(5): 995-1004, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28283906

RESUMEN

Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.


Asunto(s)
Cloranfenicol/farmacología , Fluorenos/química , Péptidos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Cloranfenicol/análogos & derivados , Cloranfenicol/síntesis química , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas Fluorescentes Verdes/antagonistas & inhibidores , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Sitios Internos de Entrada al Ribosoma/efectos de los fármacos , Modelos Moleculares , Péptidos/síntesis química , Peptidil Transferasas/antagonistas & inhibidores , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Poli A/genética , Poli A/metabolismo , Unión Proteica , Inhibidores de la Síntesis de la Proteína/síntesis química , Puromicina/farmacología , Ribosomas/genética , Ribosomas/metabolismo
14.
Nucleic Acids Res ; 43(1): 661-73, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25510494

RESUMEN

In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1-ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the 'ribosome puzzle', namely the detailed molecular insight into the topology of the S1-ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas Ribosómicas/química , Ribosomas/química , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo
15.
Biol Chem ; 395(5): 559-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24497223

RESUMEN

The ribosome and protein synthesis are major targets within the cell for inhibition by antibiotics, such as the tetracyclines. The tetracycline family of antibiotics represent a large and diverse group of compounds, ranging from the naturally produced chlortetracycline, introduced into medical usage in the 1940s, to second and third generation semi-synthetic derivatives of tetracycline, such as doxycycline, minocycline and more recently the glycylcycline tigecycline. Here we describe the mode of interaction of tetracyclines with the ribosome and mechanism of action of this class of antibiotics to inhibit translation. Additionally, we provide an overview of the diverse mechanisms by which bacteria obtain resistance to tetracyclines, ranging from efflux, drug modification, target mutation and the employment of specialized ribosome protection proteins.


Asunto(s)
Antibacterianos/farmacología , Tetraciclinas/farmacología , Resistencia a Medicamentos , Humanos
16.
Nat Commun ; 12(1): 4466, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294725

RESUMEN

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Asunto(s)
Antibacterianos/farmacología , Cetólidos/farmacología , Macrólidos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Sitios de Unión/genética , Microscopía por Crioelectrón , Farmacorresistencia Microbiana/genética , Eritromicina/química , Eritromicina/farmacología , Genes Bacterianos , Cetólidos/química , Cetólidos/farmacocinética , Macrólidos/química , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Insercional , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/efectos de los fármacos
17.
Artículo en Inglés | MEDLINE | ID: mdl-27481773

RESUMEN

Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/genética , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Ribosomas/química
18.
Curr Opin Struct Biol ; 37: 123-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26859868

RESUMEN

As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit. Interaction between the nascent polypeptide chain and the ribosomal tunnel can modulate the translation rate and induce translational stalling to regulate gene expression. In this article, we highlight recent structural insights into how the nascent polypeptide chain, either alone or in cooperation with co-factors, can interact with components of the ribosomal tunnel to regulate translation via inactivating the peptidyltransferase center of the ribosome and inducing ribosome stalling.


Asunto(s)
Péptidos/química , Biosíntesis de Proteínas , Ribosomas/química , Sistemas de Lectura Abierta , Proteínas del Envoltorio Viral/química
19.
Nat Commun ; 7: 12026, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27380950

RESUMEN

Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.


Asunto(s)
Proteínas Bacterianas/química , Biosíntesis de Proteínas/efectos de los fármacos , Aminoacil-ARN de Transferencia/química , Ribosomas/metabolismo , Streptococcus sanguis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Eritromicina/química , Eritromicina/farmacología , Sitios Internos de Entrada al Ribosoma , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/ultraestructura , Streptococcus sanguis/efectos de los fármacos , Streptococcus sanguis/metabolismo
20.
Nat Struct Mol Biol ; 22(6): 470-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25984971

RESUMEN

The increasing prevalence of multidrug-resistant pathogenic bacteria is making current antibiotics obsolete. Proline-rich antimicrobial peptides (PrAMPs) display potent activity against Gram-negative bacteria and thus represent an avenue for antibiotic development. PrAMPs from the oncocin family interact with the ribosome to inhibit translation, but their mode of action has remained unclear. Here we have determined a structure of the Onc112 peptide in complex with the Thermus thermophilus 70S ribosome at a resolution of 3.1 Å by X-ray crystallography. The Onc112 peptide binds within the ribosomal exit tunnel and extends toward the peptidyl transferase center, where it overlaps with the binding site for an aminoacyl-tRNA. We show biochemically that the binding of Onc112 blocks and destabilizes the initiation complex, thus preventing entry into the elongation phase. Our findings provide a basis for the future development of this class of potent antimicrobial agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/química , Thermus thermophilus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA