Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38894407

RESUMEN

This paper presents a novel robust output feedback control that simultaneously performs both stabilization and trajectory tracking for a class of underactuated nonholonomic systems despite model uncertainties, external disturbance, and the absence of velocity measurement. To solve this challenging problem, a generalized normal form has been successfully created by employing an input-output feedback linearization approach and a change in coordinates (diffeomorphism). This research mainly focuses on the stabilization problem of nonholonomic systems that can be transformed to a normal form and pose several challenges, including (i) a nontriangular normal form, (ii) the internal dynamics of the system are non-affine in control, and (iii) the zero dynamics of the system are not in minimum phase. The proposed scheme utilizes combined backstepping and sliding mode control (SMC) techniques. Furthermore, the full-order high gain observer (HGO) has been developed to estimate the derivative of output functions and internal dynamics. Then, full-order HGO and the backstepping SMC have been integrated to synthesize a robust output feedback controller. A differential-drive type (2,0) the wheeled mobile robot has been considered as an example to support the theoretical results. The simulation results demonstrate that the backstepping SMC exhibits robustness against bounded uncertainties.

2.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139551

RESUMEN

This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.


Asunto(s)
Identificación Biométrica , Dedos , Humanos , Dedos/diagnóstico por imagen , Dedos/irrigación sanguínea , Identificación Biométrica/métodos , Biometría/métodos , Mano/diagnóstico por imagen , Redes Neurales de la Computación
3.
Sci Rep ; 12(1): 17852, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284142

RESUMEN

This work is used to design a novel robust optimization control law augmented with Robust Generalized Dynamic Inversion (RGDI) for continuous varying perturbations in the Twin Rotor MIMO System (TRMS). The perturbations like coupling effect, un-known states, gyroscopic disturbance torque, parametric uncertainties and parametric disturbances are considered as unwanted signal which should be optimized by an efficient controller. The variable structured systems like the TRMS (prototype) have great focus due to its high computational cost with a higher order non-linear behavior. The RGDI based controller designed to remove nonlinear dynamics as well as to avoid singularity issue with the augmentation of stability based mathematical operations (lyapunov stability analysis, controllability and observability matrices ) in the presence of considered perturbations during implementation. In this paper, we develop estimation of state deviation calculation between control angles and desired angles known as Euclidean error norm. The next step was to design RGDI based controller [Sliding Mode Control (SMC) and [Formula: see text] optimization] to minimize considered perturbations as well as the computational cost. The sharp (rapid) chattering phenomena in RGDI based SMC reduce the actuators performance that goes towards the failure of actuators. While the RGDI based [Formula: see text] optimization overcome the computational cost and minimizes [Formula: see text] norm that's guaranteeing the robust stability as well as robust performance. The robustness of the optimization control technique validated by taking its worst case via MATLAB-Simulation. A real-time implementation applied to evaluate the worth of novel dynamic approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA