Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Infect Dis ; 71(16): 2073-2078, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358960

RESUMEN

BACKGROUND: The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a current pandemic of unprecedented scale. Although diagnostic tests are fundamental to the ability to detect and respond, overwhelmed healthcare systems are already experiencing shortages of reagents associated with this test, calling for a lean immediately applicable protocol. METHODS: RNA extracts of positive samples were tested for the presence of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction, alone or in pools of different sizes (2-, 4-, 8-, 16-, 32-, and 64-sample pools) with negative samples. Transport media of additional 3 positive samples were also tested when mixed with transport media of negative samples in pools of 8. RESULTS: A single positive sample can be detected in pools of up to 32 samples, using the standard kits and protocols, with an estimated false negative rate of 10%. Detection of positive samples diluted in even up to 64 samples may also be attainable, although this may require additional amplification cycles. Single positive samples can be detected when pooling either after or prior to RNA extraction. CONCLUSIONS: As it uses the standard protocols, reagents, and equipment, this pooling method can be applied immediately in current clinical testing laboratories. We hope that such implementation of a pool test for coronavirus disease 2019 would allow expanding current screening capacities, thereby enabling the expansion of detection in the community, as well as in close organic groups, such as hospital departments, army units, or factory shifts.


Asunto(s)
COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , COVID-19/virología , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad
2.
Nat Commun ; 14(1): 7628, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993446

RESUMEN

p53-mediated cell cycle arrest during DNA damage is dependent on the induction of p21 protein, encoded by the CDKN1A gene. p21 inhibits cyclin-dependent kinases required for cell cycle progression to guarantee accurate repair of DNA lesions. Hence, fine-tuning of p21 levels is crucial to preserve genomic stability. Currently, the multilayered regulation of p21 levels during DNA damage is not fully understood. Herein, we identify the human RNA binding motif protein 42 (RBM42) as a regulator of p21 levels during DNA damage. Genome-wide transcriptome and interactome analysis reveals that RBM42 alters the expression of p53-regulated genes during DNA damage. Specifically, we demonstrate that RBM42 facilitates CDKN1A splicing by counteracting the splicing inhibitory effect of RBM4 protein. Unexpectedly, we also show that RBM42, underpins translation of various splicing targets, including CDKN1A. Concordantly, transcriptome-wide mapping of RBM42-RNA interactions using eCLIP further substantiates the dual function of RBM42 in regulating splicing and translation of its target genes, including CDKN1A. Collectively, our data show that RBM42 couples splicing and translation machineries to fine-tune gene expression during DNA damage response.


Asunto(s)
Genes cdc , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
FEBS Lett ; 597(9): 1233-1245, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36445168

RESUMEN

Prolonged metabolic stress can lead to severe pathologies. In metabolically challenged primary fibroblasts, we assigned a novel role for the poorly characterized miR-4734 in restricting ATF4 and IRE1-mediated upregulation of a set of proinflammatory cytokines and endoplasmic reticulum stress-associated genes. Conversely, inhibition of this miRNA augmented the expression of those genes. Mechanistically, miR-4734 was found to restrict the expression of the transcriptional activator NF-kappa-B inhibitor zeta (NFKBIZ), which is required for optimal expression of the proinflammatory genes and whose mRNA is targeted directly by miR-4734. Concordantly, overexpression of NFKBIZ compromised the effects of miR-4734, underscoring the importance of this direct targeting. As the effects of miR-4734 were evident under stress but not under basal conditions, it may possess therapeutic utility towards alleviating stress-induced pathologies.


Asunto(s)
MicroARNs , Citocinas/genética , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Humanos
4.
Nat Commun ; 14(1): 3293, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280197

RESUMEN

Lissencephaly-1 (LIS1) is associated with neurodevelopmental diseases and is known to regulate the molecular motor cytoplasmic dynein activity. Here we show that LIS1 is essential for the viability of mouse embryonic stem cells (mESCs), and it governs the physical properties of these cells. LIS1 dosage substantially affects gene expression, and we uncovered an unexpected interaction of LIS1 with RNA and RNA-binding proteins, most prominently the Argonaute complex. We demonstrate that LIS1 overexpression partially rescued the extracellular matrix (ECM) expression and mechanosensitive genes conferring stiffness to Argonaute null mESCs. Collectively, our data transforms the current perspective on the roles of LIS1 in post-transcriptional regulation underlying development and mechanosensitive processes.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Proteínas Argonautas , Células Madre Embrionarias , Proteínas Asociadas a Microtúbulos , Animales , Ratones , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Supervivencia Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células Madre Pluripotentes , Mapas de Interacción de Proteínas , Proteínas Argonautas/metabolismo
5.
Methods Mol Biol ; 2404: 53-65, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694603

RESUMEN

RNA-binding proteins (RBPs) play a key role in post-transcriptional regulation via binding to coding and non-coding RNAs. Recent development in experimental technologies, aimed to identify the targets of RBPs, has significantly broadened our knowledge on protein-RNA interactions. However, for many RBPs in many organisms and cell types, experimental RNA-binding data is not available. In this chapter we describe a computational approach, named RBPmap, available as a web service via http://rbpmap.technion.ac.il/ and as a stand-alone version for download. RBPmap was designed for mapping and predicting the binding sites of any RBP within a nucleic acid sequence, given the availability of an experimentally defined binding motif of the RBP. The algorithm searches for a sub-sequence that significantly matches the RBP motif, considering the clustering propensity of other weak matches within the motif environment. Here, we present different applications of RBPmap for discovering the involvement of RBPs and their targets in a variety of cellular processes, in health and disease states. Finally, we demonstrate the performance of RBPmap in predicting the binding targets of RBPs in large-scale RNA-binding data, reinforcing the strength of the tool in distinguishing cognate binding sites from weak motifs.


Asunto(s)
ARN/química , Algoritmos , Sitios de Unión , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN
6.
Cell Rep ; 35(9): 109198, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077720

RESUMEN

Embryonic stem cell (ESC) self-renewal and cell fate decisions are driven by a broad array of molecular signals. While transcriptional regulators have been extensively studied in human ESCs (hESCs), the extent to which RNA-binding proteins (RBPs) contribute to human pluripotency remains unclear. Here, we carry out a proteome-wide screen and identify 810 proteins that bind RNA in hESCs. We reveal that RBPs are preferentially expressed in hESCs and dynamically regulated during early stem cell differentiation. Notably, many RBPs are affected by knockdown of OCT4, a master regulator of pluripotency, several dozen of which are directly targeted by this factor. Using cross-linking and immunoprecipitation (CLIP-seq), we find that the pluripotency-associated STAT3 and OCT4 transcription factors interact with RNA in hESCs and confirm the binding of STAT3 to the conserved NORAD long-noncoding RNA. Our findings indicate that RBPs have a more widespread role in human pluripotency than previously appreciated.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Proteínas de Unión al ARN/metabolismo , Diferenciación Celular/genética , Línea Celular , ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Unión Proteica , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Factor de Transcripción STAT3/metabolismo
7.
Curr Opin Struct Biol ; 53: 124-130, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30172766

RESUMEN

RNA-binding proteins (RBPs) interact with RNA to form Ribonucleoprotein Particles (RNPs). The interaction between RBPs and their RNA partners are traditionally thought to be mediated by highly conserved RNA-binding domains (RBDs). Recently, high-throughput studies led to the discovery of hundreds of novel proteins and domains, of which many do not follow the classical definition of RNA-binding. Despite technological innovations, experimental screenings are currently limited to the detection of specific types of RNPs, underscoring the importance of computational methods for predicting novel RBPs and RNA interacting residues and interfaces. Here, we discuss major challenges in computational prediction of RBPs and RBDs and outline new strategies to circumvent current limitations of experimental techniques.


Asunto(s)
Proteínas de Unión al ARN/química , ARN/química , Ribonucleoproteínas/química , Sitios de Unión , Biología Computacional , Simulación del Acoplamiento Molecular , Unión Proteica , Motivos de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA