Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Med ; 30(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172662

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/metabolismo , Citocinas , Inflamación , Mucinas
2.
Small ; 16(28): e2001244, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519515

RESUMEN

Complex recombinant biomaterials that merge the self-assembling properties of different (poly)peptides provide a powerful tool for the achievement of specific structures, such as hydrogel networks, by tuning the thermodynamics and kinetics of the system through a tailored molecular design. In this work, elastin-like (EL) and silk-like (SL) polypeptides are combined to obtain a silk-elastin-like recombinamer (SELR) with dual self-assembly. First, EL domains force the molecule to undergo a phase transition above a precise temperature, which is driven by entropy and occurs very fast. Then, SL motifs interact through the slow formation of ß-sheets, stabilized by H-bonds, creating an energy barrier that opposes phase separation. Both events lead to the development of a dynamic microstructure that evolves over time (until a pore size of 49.9 ± 12.7 µm) and to a delayed hydrogel formation (obtained after 2.6 h). Eventually, the network is arrested due to an increase in ß-sheet secondary structures (up to 71.8 ± 0.8%) within SL motifs. This gives a high bond strength that prevents the complete segregation of the SELR from water, which results in a fixed metastable microarchitecture. These porous hydrogels are preliminarily tested as biomimetic niches for the isolation of cells in 3D cultures.


Asunto(s)
Elastina , Seda , Hidrogeles , Cinética , Termodinámica
3.
Bioconjug Chem ; 28(3): 828-835, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158945

RESUMEN

In the last decades, recombinant structural proteins have become very promising in addressing different issues such as the lack of traceability of biomedical devices or the design of more sensitive biosensors. Among them, we find elastin-like recombinamers (ELRs), which can be designed to self-assemble into diverse structures, such as hydrogels. Furthermore, they might be combined with other protein polymers, such as silk, to give silk-elastin-like recombinamers (SELRs), holding the properties of both proteins. In this work, due to their recombinant nature, we have fused two different fluorescent proteins (FPs), i.e., the green Aequorea coerulescens enhanced green fluorescent protein and the near-infrared eqFP650, to a SELR able to form irreversible hydrogels through physical cross-linking. These recombinamers showed an emission of fluorescence similar to the single FPs, and they were capable of forming hydrogels with different stiffness (G' = 60-4000 Pa) by varying the concentration of the SELR-FPs. Moreover, the absorption spectrum of SELR-eqFP650 showed a peak greatly overlapping the emission spectrum of the SELR-Aequorea coerulescens enhanced green fluorescent protein. Hence, this enables Förster resonance energy transfer (FRET) upon the interaction between two SELR molecules, each one containing a different FP, due to the stacking of silk domains at any temperature and to the aggregation of elastin-like blocks above the transition temperature. This effect was studied by different methods, and a FRET efficiency of 0.06-0.2 was observed, depending on the technique used for its calculation. Therefore, innovative biological applications arise from the combination of SELRs with FPs, such as enhancing the traceability of hydrogels based on SELRs intended for tissue engineering, the development of biosensors, and the prediction of FRET efficiencies of novel FRET pairs.


Asunto(s)
Elastina/química , Proteínas Fluorescentes Verdes/química , Hidrogeles/química , Seda/química , Animales , Materiales Biocompatibles , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Recombinantes/química , Escifozoos/química
4.
J Mater Sci Mater Med ; 28(8): 115, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28647792

RESUMEN

Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p < 0.05). Immunofluorescence against a human mitochondrial antibody three months post-implantation showed that the hMSCs were integrated into the de novo formed tissue, thus suggesting their ability to overcome the interspecies barrier. Hence, we conclude that the use of xenogeneic MSCs embedded in an ELR-based hydrogel leads to the successful regeneration of hyaline cartilage in osteochondral lesions.


Asunto(s)
Materiales Biocompatibles/química , Elastina/química , Cartílago Hialino/crecimiento & desarrollo , Hidrogeles/química , Células Madre Mesenquimatosas/citología , Regeneración , Animales , Fenómenos Biomecánicos , Células de la Médula Ósea/metabolismo , Huesos/metabolismo , Cartílago Articular/patología , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Conejos , Reproducibilidad de los Resultados , Ingeniería de Tejidos/métodos , Tomografía Computarizada por Rayos X , Trasplante Heterólogo
5.
Bioconjug Chem ; 26(7): 1252-65, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26001189

RESUMEN

This Review discusses the use of elastin-like polymers and their recombinant version, elastin-like recombinamers, in drug-delivery systems. These macromolecules exhibit a number of interesting properties that are rarely found together in any other family of materials, especially extremely high biocompatibility, high bioactivity and functionality, complex yet fully controlled composition, and stimuli responsiveness. Appropriate design of these molecules opens up a broad range of different possibilities for their use in new therapeutic platforms. The first of these described herein is the use of ELRs in single-molecule devices as therapeutic entities in their own right. Subsequently, we describe how the self-assembly properties of these materials can be exploited to create nanocarriers and, eventually, microcarriers that are able to temporally and spatially control and direct the release of their drug load. Intracellular drug-delivery devices and nanocarriers for treating cancer are among the uses described in that section. Finally, the use of ELRs as base materials for implantable drug depots, in the form of hydrogels, is discussed.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Elastina/química , Nanotecnología/métodos , Animales , Humanos , Hidrogeles/química , Proteínas Recombinantes/química
6.
Biomater Adv ; 154: 213595, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639856

RESUMEN

New strategies to develop drug-loaded nanocarriers with improved therapeutic efficacy are needed for cancer treatment. Herein we report a novel drug-delivery nanosystem comprising encapsulation of the chemotherapeutic drug docetaxel (DTX) and recombinant fusion of a small peptide inhibitor of Akt kinase within an elastin-like recombinamer (ELR) vehicle. This combined approach is also precisely targeted to colorectal cancer cells by means of a chemically conjugated DNA aptamer specific for the CD44 tumor marker. This 53 nm dual-approach nanosystem was found to selectively affect cell viability (2.5 % survival) and proliferation of colorectal cancer cells in vitro compared to endothelial cells (50 % survival), and to trigger both apoptosis- and necrosis-mediated cell death. Our findings also show that the nanohybrid particles remain stable under physiological conditions, trigger sustained drug release and possess an adequate pharmacokinetic profile after systemic intravenous administration. In vivo assays showed that these dual-approach nanohybrids significantly reduced the number of tumor polyps along the colorectal tract in a murine colorectal cancer model. Furthermore, systemic administration of advanced nanohybrids induced tissue recovery by improving the morphology of gastrointestinal crypts and the tissue architecture. Taken together, these findings indicate that our strategy of an advanced dual-approach nanosystem allows us to achieve successful controlled release of chemotherapeutics in cancer cells and may have a promising potential for colorectal cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Nanopartículas , Ratones , Animales , Docetaxel/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Células Endoteliales , Portadores de Fármacos , Inhibidores de la Angiogénesis , Neoplasias Colorrectales/tratamiento farmacológico
7.
Pharmaceutics ; 15(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986732

RESUMEN

The 3D printing of titanium (Ti) offers countless possibilities for the development of personalized implants with suitable mechanical properties for different medical applications. However, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC) recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion, proliferation, and differentiation, although at lower levels than those for every single moiety. These results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to improve the osseointegration of Ti implants. Further investigation on the amount and distribution of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation compared to the present study.

8.
Pharmaceutics ; 14(12)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36559207

RESUMEN

Despite the promising potential of hydrogel-based therapeutic approaches for spinal cord injury (SCI), the need for new biomaterials to design effective strategies for SCI treatment and the outstanding properties of silk-elastin-like polymers (SELP), the potential use of SELPs in SCI is currently unknown. In this context, we assessed the effects elicited by the in vivo acute intraparenchymal injection of an SELP named (EIS)2-RGD6 in a clinically relevant model of SCI. After optimization of the injection system, the distribution, structure, biodegradability, and cell infiltration capacity of (EIS)2-RGD6 were assessed. Finally, the effects exerted by the (EIS)2-RGD6 injection-in terms of motor function, myelin preservation, astroglial and microglia/macrophage reactivity, and fibrosis-were evaluated. We found that (EIS)2-RGD6 can be acutely injected in the lesioned spinal cord without inducing further damage, showing a widespread distribution covering all lesioned areas with a single injection and facilitating the formation of a slow-degrading porous scaffold at the lesion site that allows for the infiltration and/or proliferation of endogenous cells with no signs of collapse and without inducing further microglial and astroglial reactivity, as well as even reducing SCI-associated fibrosis. Altogether, these observations suggest that (EIS)2-RGD6-and, by extension, SELPs-could be promising polymers for the design of therapeutic strategies for SCI treatment.

9.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771577

RESUMEN

The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.

10.
Int J Pharm ; 599: 120438, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33662472

RESUMEN

Cancer has reached pandemic dimensions in the whole world. Although current medicine offers multiple treatment options against cancer, novel therapeutic strategies are needed due to the low specificity of chemotherapeutic drugs, undesired side effects and the presence of different incurable types of cancer. Among these new strategies, nanomedicine arises as an encouraging approach towards personalized medicine with high potential for present and future cancer patients. Therefore, nanomedicine aims to develop novel tools with wide potential in cancer treatment, imaging or even theranostic purposes. Even though numerous preclinical studies have been published with successful preliminary results, promising nanosystems have to face multiple obstacles before adoption in clinical practice as safe options for patients with cancer. In this MiniReview, we provide a short overview on the latest advances in current nanomedicine approaches, challenges and promising strategies towards more accurate cancer treatment.


Asunto(s)
Nanomedicina , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Nanomedicina Teranóstica
11.
ACS Appl Mater Interfaces ; 13(47): 55790-55805, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34788541

RESUMEN

Pancreatic cancer is one of the deadliest cancers partly due to late diagnosis, poor drug delivery to the target site, and acquired resistance to therapy. Therefore, more effective therapies are urgently needed to improve the outcome of patients. In this work, we have tested self-assembling genetically engineered polymeric nanoparticles formed by elastin-like recombinamers (ELRs), carrying a small peptide inhibitor of the protein kinase Akt, in both PANC-1 and patient-derived pancreatic cancer cells (PDX models). Nanoparticle cell uptake was measured by flow cytometry, and subcellular localization was determined by confocal microscopy, which showed a lysosomal localization of these nanoparticles. Furthermore, metabolic activity and cell viability were significantly reduced after incubation with nanoparticles carrying the Akt inhibitor in a time- and dose-dependent fashion. Self-assembling 73 ± 3.2 nm size nanoparticles inhibited phosphorylation and consequent activation of Akt protein, blocked the NF-κB signaling pathway, and triggered caspase 3-mediated apoptosis. Furthermore, in vivo assays showed that ELR-based nanoparticles were suitable devices for drug delivery purposes with long circulating time and minimum toxicity. Hence, the use of these smart nanoparticles could lead to the development of more effective treatment options for pancreatic cancer based on the inhibition of Akt.


Asunto(s)
Antineoplásicos/farmacología , Nanopartículas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Péptidos/farmacología , Polímeros/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lisosomas/química , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Tamaño de la Partícula , Péptidos/química , Polímeros/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Propiedades de Superficie
12.
ACS Biomater Sci Eng ; 7(11): 5028-5038, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34676744

RESUMEN

Elastin polypeptides based on -VPGVG- repeated motifs are widely used in the production of biomaterials because they are stimuli-responsive systems. On the other hand, glycine-rich sequences, mainly present in tropoelastin terminal domains, are responsible for the elastin self-assembly. In a previous study, we have recombinantly expressed a chimeric polypeptide, named resilin, elastin, and collagen (REC), inspired by glycine-rich motifs of elastin and containing resilin and collagen sequences as well. Herein, a three-block polypeptide, named (REC)3, was expressed starting from the previous monomer gene by introducing key modifications in the sequence. The choice was mandatory because the uneven distribution of the cross-linking sites in the monomer precluded the hydrogel production. In this work, the cross-linked polypeptide appeared as a soft hydrogel, as assessed by rheology, and the linear un-cross-linked trimer self-aggregated more rapidly than the REC monomer. The absence of cell-adhesive sequences did not affect cell viability, while it was functional to the production of a material presenting antiadhesive properties useful in the integration of synthetic devices in the body and preventing the invasion of cells.


Asunto(s)
Elastina , Hidrogeles , Colágeno , Elastina/genética , Péptidos , Tropoelastina/genética
13.
Macromol Rapid Commun ; 31(6): 568-73, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21590944

RESUMEN

Here, we describe a procedure to manufacture smart hybrid probes that exhibit tunable optical properties as a function of multiple environmental variations. Initially, we achieved a one-pot synthesis of gold-PREP (photo-responsive elastin-like polymer) conjugate Gold-AzoGlu15 via reduction of auric acid in the presence of PREP AzoGlu15. Outstandingly, Gold-AzoGlu15 exhibited pH and temperature sensitiveness. However, Gold-AzoGlu15 was not UV-vis sensitive. We noticed that photo-isomerisation of azobenzene moieties in Gold-AzoGlu15 could not be detected by UV-vis spectroscopy. In a subsequent step, we explored the use of cyclodextrins and the formation of alkanethiol mixed-monolayers over mother Gold-AzoGlu15 by thiol-place exchange reactions in order to decouple photo-isomerisation of azobenzene from the bulk phase absorption. In this sense we achieved the synthesis of ß-cyclodextrin capped Gold-CD-AzoGlu15. Notable was that cis-trans photo-conversion of azobenzene groups in Gold-CD-AzoGlu15 could be successfully detected. Finally, we present the optical properties exhibited by multi-sensitive probe Gold-CD-AzoGlu15 as a function of pH, temperature and UV-vis irradiation. We think that gold-PREP hybrids could be of great interest in the design of multi-functional chromophore-metal nanocomposites that operate in aqueous media for the development of multi-stimuli sensitive detectors for biosensing applications.

14.
Pharmaceutics ; 12(11)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228250

RESUMEN

Biomaterials science is one of the most rapidly evolving fields in biomedicine. However, although novel biomaterials have achieved well-defined goals, such as the production of devices with improved biocompatibility and mechanical properties, their development could be more ambitious. Indeed, the integration of active targeting strategies has been shown to allow spatiotemporal control of cell-material interactions, thus leading to more specific and better-performing devices. This manuscript reviews recent advances that have led to enhanced biomaterials resulting from the use of natural structural macromolecules. In this regard, several structural macromolecules have been adapted or modified using biohybrid approaches for use in both regenerative medicine and therapeutic delivery. The integration of structural and functional features and aptamer targeting, although still incipient, has already shown its ability and wide-reaching potential. In this review, we discuss aptamer-functionalized hybrid protein-based or polymeric biomaterials derived from structural macromolecules, with a focus on bioresponsive/bioactive systems.

15.
Curr Med Chem ; 26(40): 7117-7146, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29737250

RESUMEN

Protein-based polymers are some of the most promising candidates for a new generation of innovative biomaterials as recent advances in genetic-engineering and biotechnological techniques mean that protein-based biomaterials can be designed and constructed with a higher degree of complexity and accuracy. Moreover, their sequences, which are derived from structural protein-based modules, can easily be modified to include bioactive motifs that improve their functions and material-host interactions, thereby satisfying fundamental biological requirements. The accuracy with which these advanced polypeptides can be produced, and their versatility, self-assembly behavior, stimuli-responsiveness and biocompatibility, means that they have attracted increasing attention for use in biomedical applications such as cell culture, tissue engineering, protein purification, surface engineering and controlled drug delivery. The biopolymers discussed in this review are elastin-derived protein-based polymers which are biologically inspired and biomimetic materials. This review will also focus on the design, synthesis and characterization of these genetically encoded polymers and their potential utility for controlled drug and gene delivery, as well as in tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Investigación Biomédica , Elastina/genética , Ingeniería Genética , Animales , Elastina/química , Humanos
16.
J Tissue Eng Regen Med ; 12(3): e1450-e1460, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28865091

RESUMEN

Biocompatibility studies, especially innate immunity induction, in vitro and in vivo cytotoxicity, and fibrosis, are often lacking for many novel biomaterials including recombinant protein-based ones, such as elastin-like recombinamers (ELRs), and has not been extensively explored in the scientific literature, in contrast to traditional biomaterials. Herein, we present the results from a set of experiments designed to elucidate the preliminary biocompatibility of 2 types of ELRs that are able to form extracellular matrix-like hydrogels through either physical or chemical cross-linking both of which are intended for different applications in tissue engineering and regenerative medicine. Initially, we present in vitro cytocompatibility results obtained upon culturing human umbilical vein endothelial cells on ELR substrates, showing optimal proliferation up to 9 days. Regarding in vivo cytocompatibility, luciferase-expressing hMSCs were viable for at least 4 weeks in terms of bioluminescence emission when embedded in ELR hydrogels and injected subcutaneously into immunosuppressed mice. Furthermore, both types of ELR-based hydrogels were injected subcutaneously in immunocompetent mice and serum TNFα, IL-1ß, IL-4, IL-6, and IL-10 concentrations were measured by enzyme-linked immunosorbent assay, confirming the lack of inflammatory response, as also observed upon macroscopic and histological evaluation. All these findings suggest that both types of ELRs possess broad biocompatibility, thus making them very promising for tissue engineering and regenerative medicine-related applications.


Asunto(s)
Materiales Biocompatibles/farmacología , Reactivos de Enlaces Cruzados/farmacología , Elastina/farmacología , Hidrogeles/farmacología , Proteínas Recombinantes/farmacología , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Recuento de Células , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Rastreo Celular , Citocinas/sangre , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/patología , Inyecciones Subcutáneas , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones
18.
Adv Drug Deliv Rev ; 97: 85-100, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26705126

RESUMEN

The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Animales , Elastina , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , Péptidos/administración & dosificación , Péptidos/química
19.
Mini Rev Med Chem ; 4(5): 461-76, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15180503

RESUMEN

Ribosome-Inactivating Proteins (RIPs) are enzymes that trigger the catalytic inactivation of ribosomes and other substrates. They are present in a large number of plants and have been found also in fungi, algae and bacteria. RIPs are currently classified as type 1, those formed by a single polypeptide chain with the enzymatic activity, and type 2, those formed by 2 types of chains, i.e. A chains equivalent to a type 1 RIPs and B chains with lectin activity. Type 2 RIPs usually contain the formulae A-B, (A-B)2 and less frequent (A-B)4 and polymeric forms of type 2 RIPs lectins. RIPs are broadly distributed in plants, and are present also in fungi, bacteria, at least in one alga; recently RIP-type activity has been described in mammalian tissues. The highest number of RIPs has been found in Caryophyllaceae, Sambucaceae, Cucurbitaceae, Euphorbiaceae, Phytolaccaceae and Poaceae. However there are no systematic screening studies to allow generalisations about occurrence. The most known activity of RIPs is the translational inhibitory activity, which seems a consequence of a N-glycosidase on the 28 S rRNA of the eukaryotic ribosome that triggers the split of the A(4324) (or an equivalent base in other ribosomes), which is key for translation. This activity seems to be part of a general adenine polynucleotide glycosylase able to act on several substrates other than ribosomes, such as tRNA, mRNA, viral RNA and DNA. Other enzymatic activities found in RIPs are lipase, chitinase and superoxide dismutase. RIPs are phylogenetically related. In general RIPs from close families share good amino acid homologies. Type 1 RIPs and the A chains of type 2 RIPs from Magnoliopsida (dicotyledons) are closely related. RIPs from Liliopsida (monocotyledons) are at the same time closely related and distant from Magnoliopsida. Concerning the biological roles played by RIPs there are several hypotheses, but the current belief is that they could play significant roles in the antipathogenic (viruses and fungi), stress and senescence responses. In addition, roles as antifeedant and storage proteins have been also proposed. Future research will approach the potential biological roles played by RIPs and their use as toxic effectors in the construction of immunotoxins and conjugates for target therapy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ribosomas/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología
20.
J Biotechnol ; 112(3): 313-22, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15313008

RESUMEN

Musarmins are type 1 ribosome-inactivating proteins with N-glycosidase activity on the 28 S rRNA that are present in bulbs of Muscari armeniacum L. and Miller at rather low concentrations. In the present work, a cDNA fragment coding for musarmin 1 was sub-cloned and expressed in Escherichia coli. The recombinant protein (rMU1) was synthesised as a polypeptide of 295 amino acids that was delivered to the periplasm and processed. Recombinant musarmin 1 present in the periplam has two forms: insoluble with a molecular mass of 29,423 and soluble with a molecular mass of 29,117 because of a small proteolytic shortening with respect to the insoluble one, presumably in the C-terminal. The yield of protein homogeneous by polyacrylamide gel electrophoresis was 23mgl-1 of bacterial culture. The recombinant musarmin 1 forms isolated from both the soluble and the insoluble (upon refolding) fractions retained full translational inhibitory and 28 S rRNA N-glycosidase activities as compared with the native protein. The recombinant protein displayed great stability towards trypsin, collagenase, rat plasma and rat liver protein extract, but was sensitive to the action of papain and proteinase K. The easy availability and full activity of the recombinant musarmin 1 makes it a good candidate for the preparation of immunotoxins for targeted therapy and for the construction of transgenic plants expressing it as antipathogenic agent.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Liliaceae/genética , Liliaceae/metabolismo , N-Glicosil Hidrolasas/biosíntesis , N-Glicosil Hidrolasas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Ingeniería de Proteínas/métodos , Liliaceae/clasificación , Raíces de Plantas/clasificación , Proteínas Recombinantes/biosíntesis , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA