Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884526

RESUMEN

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


Asunto(s)
Antivirales/farmacología , Cromo/farmacología , Cobalto/farmacología , Molibdeno/farmacología , Impresión Tridimensional , Aleaciones , COVID-19 , Humanos , Porosidad , SARS-CoV-2/efectos de los fármacos , Propiedades de Superficie , Inactivación de Virus/efectos de los fármacos
2.
Micromachines (Basel) ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38930664

RESUMEN

Auxetic structures, with re-entrant (inverted hexagonal or bow tie) unit cells, have received considerable interest due to their negative Poisson's ratio property that results in superior mechanical properties. This study proposes a simple method to create non-homogeneous re-entrant honeycombs by modifying the size of chevron crosslinks. The various structural designs were conceived by changing the geometrical dimensions of the crosslinks, namely the length (lcl) and the thickness (tcl), while maintaining the parameters of the re-entrant cell walls. The influence of the design parameters of chevron crosslinks on the mechanical behaviour of additively manufactured re-entrant honeycombs was investigated experimentally and numerically. The structures were fabricated using the Fused Deposition Modelling (FDM) technique from polylactic acid (PLA) plastic. In-plane quasi-static compression tests were conducted to extract the elastic, plastic, and densification properties of the structures. Furthermore, a Finite Element (FE) model was developed via LS-DYNA R11.0 software, validated experimentally, and was then used to obtain a deeper insight into the deformation behaviour and auxetic performance of various designs. The obtained results revealed that the mechanical performance of re-entrant honeycombs can only be tuned by controlling the geometrical configuration of chevron crosslinks.

3.
Materials (Basel) ; 16(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614767

RESUMEN

Selective Laser Melting (SLM) is an emerging Additive Manufacturing (AM) technique for the on-demand fabrication of metal parts. The mechanical properties of Selectively Laser Melted (SLMed) parts are sensitive to oxygen concentration within the SLM build chamber due to the formation of oxides, which may lead to various negative consequences. As such, this work explores the influence of SLM atmospheric Oxygen Content (OC) on the macroscopic mechanical properties of SLMed AlSi10Mg bulk material and Triply Periodic Minimal Surface (TPMS) lattices namely primitive, gyroid, and diamond. Standard quasi-static tensile and crushing tests were conducted to evaluate the bulk properties of AlSi10Mg and the compressive metrics of TPMS-lattices. Two oxygen concentrations of 100 ppm and 1000 were used during the SLM fabrication of the experimental specimens. The tensile test data revealed a small influence of the oxygen content on the bulk properties. The low oxygen concentration improved the elongation while slightly reduced the ultimate tensile strength and yield stress. Similarly, the influence of the oxygen content on the compressive responses of TPMS-lattices was generally limited and primarily depended on their geometrical configuration. This study elucidates the role of SLM atmospheric oxygen content on the macroscopic behaviour of SLMed AlSi10Mg parts.

4.
J Mech Behav Biomed Mater ; 134: 105409, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037704

RESUMEN

Auxetic meta-biomaterials offer unconventional strain behaviour owing to their negative Poisson's ratio (-υ) leading to deformation modes and mechanical properties different to traditional cellular biomaterials. This can lead to favourable outcomes for load-bearing tissue engineering constructs such as bone scaffolds. Emerging early-stage studies have shown the potential of auxetic architecture in increasing cell proliferation and tissue reintegration owing to their -υ. However, research on the development of CoCrMo auxetic meta-biomaterials including bone scaffolds or implants is yet to be reported. In this regard, this paper proposes a potential framework for the development of auxetic meta-biomaterials that can be printed on demand while featuring porosity requirements suitable for load-bearing bone scaffolds. Overall, the performance of five CoCrMo auxetic meta-biomaterial scaffolds characterised under two scenarios for their potential to offer near-zero and high negative Poisson's ratio is demonstrated. Ashby's criterion followed by prototype testing was employed to evaluate the mechanical performance and failure modes of the auxetic meta-biomaterial scaffolds under uniaxial compression. The best performing scaffold architectures are identified through a multi-criteria decision-making procedure combining 'analytic hierarchy process' (AHP) and 'technique for order of preference by similarity to ideal solution' (TOPSIS). The results found the Poisson's ratio for the meta-biomaterial architectures to be in the range of -0.1 to -0.24 at a porosity range of 73-82%. It was found that the meta-biomaterial scaffold (AX1) that offered the highest auxeticity also showed the highest elastic modulus, yield, and ultimate strength of 1.66 GPa, 56 MPa and 158 MPa, respectively. The study demonstrates that the elastic modulus, yield stress, and Poisson's ratio of auxetic meta-biomaterials are primarily influenced by the underlying meta-cellular architecture followed by relative density offering a secondary influence.


Asunto(s)
Materiales Biocompatibles , Molibdeno , Cromo , Cobalto , Porosidad
5.
Materials (Basel) ; 15(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36363154

RESUMEN

Efficient and power-dense electrical machines are critical in driving the next generation of green energy technologies for many industries including automotive, aerospace and energy. However, one of the primary requirements to enable this is the fabrication of compact custom windings with optimised materials and geometries. Electrical machine windings rely on highly electrically conductive materials, and therefore, the Additive Manufacturing (AM) of custom copper (Cu) and silver (Ag) windings offers opportunities to simultaneously improve efficiency through optimised materials, custom geometries and topology and thermal management through integrated cooling strategies. Laser Powder Bed Fusion (L-PBF) is the most mature AM technology for metals, however, laser processing highly reflective and conductive metals such as Cu and Ag is highly challenging due to insufficient energy absorption. In this regard, this study details the 400 W L-PBF processing of high-purity Cu, Ag and Cu-Ag alloys and the resultant electrical conductivity performance. Six Cu and Ag material variants are investigated in four comparative studies characterising the influence of material composition, powder recoating, laser exposure and electropolishing. The highest density and electrical conductivity achieved was 88% and 73% IACS, respectively. To aid in the application of electrical insulation coatings, electropolishing parameters are established to improve surface roughness. Finally, proof-of-concept electrical machine coils are fabricated, highlighting the potential for 400 W L-PBF processing of Cu and Ag, extending the current state of the art.

6.
J Mech Behav Biomed Mater ; 114: 104175, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33214107

RESUMEN

The COVID-19 pandemic has resulted in worldwide shortages of nasopharyngeal swabs required for sample collection. While the shortages are becoming acute due to supply chain disruptions, the demand for testing has increased both as a prerequisite to lifting restrictions and in preparation for the second wave. One of the potential solutions to this crisis is the development of 3D printed nasopharyngeal swabs that behave like traditional swabs. However, the opportunity to digitally conceive and fabricate swabs allows for design improvements that can potentially reduce patient pain and discomfort. The study reports the progress that has been made on the development of auxetic nasopharyngeal swabs that can shrink under axial resistance. This allows the swab to navigate through the nasal cavity with significantly less stress on the surrounding tissues. This is achieved through systematically conceived negative Poisson's ratio (-υ) structures in a biocompatible material. Finite element (FE) and surrogate modelling techniques were employed to identify the most optimal swab shape that allows for the highest negative strain (-εlat) under safe stress (σvon). The influence and interaction effects of the geometrical parameters on the swab's performance were also characterised. The research demonstrates a new viewpoint for the development of functional nasopharyngeal swabs that can be 3D printed to reduce patient discomfort. The methodology can be further exploited to address various challenges in biomedical devices and redistributed manufacturing.


Asunto(s)
COVID-19/diagnóstico , Nasofaringe/virología , Impresión Tridimensional , Manejo de Especímenes/instrumentación , Prueba de COVID-19/instrumentación , Diseño de Equipo , Fenómenos Mecánicos
7.
J Mech Behav Biomed Mater ; 102: 103517, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31877520

RESUMEN

Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of all these parameters are required for the development of an effective bone scaffold. Traditionally, the approach has been to study each of these parameters in isolation without considering their interdependence to achieve specific properties at a certain porosity. The purpose of this study is to undertake a holistic investigation considering the stiffness, strength, permeability, and stress concentration of six scaffold architectures featuring a 68.46-90.98% porosity. With an initial target of a tibial host segment, the permeability was characterised using Computational Fluid Dynamics (CFD) in conjunction with Darcy's law. Following this, Ashby's criterion, experimental tests, and Finite Element Method (FEM) were employed to study the mechanical behaviour and their interdependencies under uniaxial compression. The FE model was validated and further extended to study the influence of stress concentration on both the stiffness and strength of the scaffolds. The results showed that the pore shape can influence permeability, stiffness, strength, and the stress concentration factor of Ti6Al4V bone scaffolds. Furthermore, the numerical results demonstrate the effect to which structural performance of highly porous scaffolds deviate, as a result of the Selective Laser Melting (SLM) process. In addition, the study demonstrates that stiffness and strength of bone scaffold at a targeted porosity is linked to the pore shape and the associated stress concentration allowing to exploit the design freedom associated with SLM.


Asunto(s)
Andamios del Tejido , Titanio , Aleaciones , Rayos Láser , Porosidad , Estrés Mecánico
8.
J Mech Behav Biomed Mater ; 112: 104090, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32980669

RESUMEN

Implant infection is a serious complication resulting in pain, mortality, prolonged recovery, and antimicrobial resistance (AMR). Reducing the risk-of-infection associated with tissue implants require imminent attention, where pure silver (Ag) offers enormous potential. However, the printability, mechanical performance nor microbial resistance of additively manufactured (AM) pure Ag is unavailable in literature. This is critical as Ag is thought to play a vital role in the development of AM patient-specific infection resistant implants in the decade to come. The study therefore additively manufactured 99.9% pure-Ag through selective laser melting (SLM) and systematically investigates its mechanical performance. The validated SLM process parameters were then used to conceive two fully porous bone scaffold each at approximately 68 and 90% (wt.) porosity. While the study brings to attention the potential defects in SLM pure-Ag through X-ray nanotomography (X-ray nCT), the mechanical properties of porous Ag scaffolds were found to be similar to cancellous bone. The study achieved the highest SLM pure-Ag density of 97% with Young's modulus (E), elastic limit (σe), yield strength (σy), ultimate strength (σult) and ultimate strain (εult) in the range of 15.5-17.8 GPa, 50.7-57.7 MPa, 57.6-67.2 MPa, 82.4-95.9 MPa and 0.07-0.10 respectively. The antimicrobial efficacy of printed silver was tested against the common implant infection-causing Staphylococcus aureus and led to 90% and 99.9% kill in 4 and 14 h respectively. The study, therefore, is a first step towards achieving a new generation Ag-based AM infection resistant porous implants.


Asunto(s)
Plata , Titanio , Antibacterianos/farmacología , Huesos , Humanos , Porosidad , Plata/farmacología , Andamios del Tejido
9.
J Mech Behav Biomed Mater ; 95: 1-12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30947119

RESUMEN

Lattice structure based morphologically matched scaffolds is rapidly growing facilitated by developments in Additive Manufacturing. These porous structures are particularly promising due to their potential in reducing stress shielding and maladapted stress concentration. Accordingly, this study presents Extra Low Interstitial (ELI) Titanium alloy based morphological scaffolds featuring three different porous architecture. All scaffolds were additively manufactured using Selective Laser Melting from Ti6Al4V ELI with porosities of 73.85, 60.53 and 55.26% with the global geometry dictated through X-Ray Computed Tomography. The elastic and plastic performance of both the scaffold prototypes and the bone section being replaced were evaluated through uniaxial compression testing. Comparing the data, the suitability of the Maxwell criterion in evaluating the stiffness behaviour of fully porous morphological scaffolds are carried out. The outcomes show that the best performing scaffolds presented in this study have high strength (169 MPa) and low stiffness (5.09 GPa) suitable to minimise stress shielding. The matching morphology in addition to high porosity allow adequate space for flow circulation and has the potential to reduce maladapted stress concentration. Finally, the Electron Diffraction X-ray analysis revealed a small difference in the composition of aluminium between the particle and the bonding material at the scaffold surface.


Asunto(s)
Rayos Láser , Transición de Fase , Tibia/citología , Andamios del Tejido/química , Titanio/química , Aleaciones , Fuerza Compresiva , Ensayo de Materiales , Porosidad , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Titanio/farmacología , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA