Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33975343

RESUMEN

Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Resorción Ósea , Osteopetrosis , Animales , Resorción Ósea/genética , Ratones , Mutación/genética , Osteoclastos , Nexinas de Clasificación/genética
2.
FEBS J ; 288(15): 4702-4723, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33605542

RESUMEN

Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.


Asunto(s)
Osteoclastos/metabolismo , Osteogénesis , Ubiquitinación , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo
3.
Bone ; 136: 115360, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278070

RESUMEN

The R51Q mutation in sorting nexin 10 (SNX10) was shown to cause a lethal genetic disease in humans, namely autosomal recessive osteopetrosis (ARO). We describe here the first R51Q SNX10 knock-in mouse model and show that mice homozygous for this mutation exhibit massive, early-onset, and widespread osteopetrosis. The mutant mice exhibit multiple additional characteristics of the corresponding human disease, including stunted growth, failure to thrive, missing or impacted teeth, occasional osteomyelitis, and a significantly-reduced lifespan. Osteopetrosis in this model is the result of osteoclast inactivity that, in turn, is caused by absence of ruffled borders in the mutant osteoclasts and by their inability to secrete protons. These results confirm that the R51Q mutation in SNX10 is a causative factor in ARO and provide a model system for studying this rare disease.


Asunto(s)
Osteopetrosis , Animales , Ratones , Mutación/genética , Osteoclastos , Osteopetrosis/diagnóstico por imagen , Osteopetrosis/genética , Nexinas de Clasificación/genética
4.
Sci Signal ; 12(563)2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622194

RESUMEN

Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr527 and its activating residue Tyr416 Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr399, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr399 caused PTPROt to dephosphorylate Src at the activating site pTyr416 In contrast, phosphorylation of PTPROt at Tyr399 enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr527, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr399 is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.


Asunto(s)
Huesos/metabolismo , Osteoclastos/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Tirosina/metabolismo , Familia-src Quinasas/metabolismo , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/citología , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Tirosina/genética
5.
Mol Biol Cell ; 25(11): 1808-18, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24694598

RESUMEN

Female mice lacking protein tyrosine phosphatase ε (PTP ε) are mildly osteopetrotic. Osteoclasts from these mice resorb bone matrix poorly, and the structure, stability, and cellular organization of their podosomal adhesion structures are abnormal. Here we compare the role of PTP ε with that of the closely related PTP α in osteoclasts. We show that bone mass and bone production and resorption, as well as production, structure, function, and podosome organization of osteoclasts, are unchanged in mice lacking PTP α. The varying effects of either PTP on podosome organization in osteoclasts are caused by their distinct N-termini. Osteoclasts express the receptor-type PTP α (RPTPa), which is absent from podosomes, and the nonreceptor form of PTP ε (cyt-PTPe), which is present in these structures. The presence of the unique 12 N-terminal residues of cyt-PTPe is essential for podosome regulation; attaching this sequence to the catalytic domains of PTP α enables them to function in osteoclasts. Serine 2 within this sequence regulates cyt-PTPe activity and its effects on podosomes. We conclude that PTPs α and ε play distinct roles in osteoclasts and that the N-terminus of cyt-PTPe, in particular serine 2, is critical for its function in these cells.


Asunto(s)
Osteoclastos/enzimología , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Secuencia de Aminoácidos , Animales , Colágeno Tipo I/metabolismo , Femenino , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Péptidos/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/deficiencia , Serina/metabolismo , Tibia/patología , Familia-src Quinasas/metabolismo
6.
Development ; 131(21): 5277-86, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15456727

RESUMEN

This study investigates the establishment of alternative cell fates during embryoid body differentiation when ES cells diverge into two epithelia simulating the pre-gastrulation endoderm and ectoderm. We report that endoderm differentiation and endoderm-specific gene expression, such as expression of laminin 1 subunits, is controlled by GATA6 induced by FGF. Subsequently, differentiation of the non-polar primitive ectoderm into columnar epithelium of the epiblast is induced by laminin 1. Using GATA6 transformed Lamc1-null endoderm-like cells, we demonstrate that laminin 1 exhibited by the basement membrane induces epiblast differentiation and cavitation by cell-to-matrix/matrix-to-cell interactions that are similar to the in vivo crosstalk in the early embryo. Pharmacological and dominant-negative inhibitors reveal that the cell shape change of epiblast differentiation requires ROCK, the Rho kinase. We also show that pluripotent ES cells display laminin receptors; hence, these stem cells may serve as target for columnar ectoderm differentiation. Laminin is not bound by endoderm derivatives; therefore, the sub-endodermal basement membrane is anchored selectively to the ectoderm, conveying polarity to its assembly and to the differentiation induced by it. Unique to these interactions is their flow through two cell layers connected by laminin 1 and their involvement in the differentiation of two epithelia from the same stem cell pool: one into endoderm controlled by FGF and GATA6; and the other into epiblast regulated by laminin 1 and Rho kinase.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ectodermo/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero , Endodermo/citología , Laminina/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Membrana Basal/metabolismo , Diferenciación Celular , Polaridad Celular , Células Cultivadas , Ectodermo/metabolismo , Embrión de Mamíferos/embriología , Endodermo/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción GATA6 , Péptidos y Proteínas de Señalización Intracelular , Laminina/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Laminina/metabolismo , Transducción de Señal , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA