Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomedicines ; 10(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35327394

RESUMEN

KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRASG12C), and silenced/overexpressed mutant KRAS using custom-designed vectors. We showed that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2 (CCL2)/interleukin-1 beta (IL-1ß)-mediated signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in C-C motif chemokine receptor 2 (Ccr2) and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and poor predicted survival. Our findings support that in vitro cellular systems are suboptimal for anti-KRAS drug screens, as these drugs function to suppress interleukin-1 receptor 1 (IL1R1) expression and myeloid IL-1ß-delivered pro-growth effects in vivo. Moreover, the findings support that IL-1ß blockade might be suitable for therapy for KRAS-mutant cancers.

2.
Elife ; 82019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31140976

RESUMEN

Lung cancer and chronic lung diseases impose major disease burdens worldwide and are caused by inhaled noxious agents including tobacco smoke. The cellular origins of environmental-induced lung tumors and of the dysfunctional airway and alveolar epithelial turnover observed with chronic lung diseases are unknown. To address this, we combined mouse models of genetic labeling and ablation of airway (club) and alveolar cells with exposure to environmental noxious and carcinogenic agents. Club cells are shown to survive KRAS mutations and to form lung tumors after tobacco carcinogen exposure. Increasing numbers of club cells are found in the alveoli with aging and after lung injury, but go undetected since they express alveolar proteins. Ablation of club cells prevents chemical lung tumors and causes alveolar destruction in adult mice. Hence club cells are important in alveolar maintenance and carcinogenesis and may be a therapeutic target against premalignancy and chronic lung disease.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Carcinógenos/metabolismo , Exposición a Riesgos Ambientales , Células Epiteliales/patología , Células Epiteliales/fisiología , Animales , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Ratones , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología , Fumar Tabaco/efectos adversos
3.
Adv Drug Deliv Rev ; 129: 242-253, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29501699

RESUMEN

Wound healing response plays a central part in chronic inflammation, affecting millions of people worldwide. It is a dynamic process that can lead to fibrosis, if tissue damage is irreversible and wound resolution is not attained. It is clear that there is a tight interconnection among wound healing, fibrosis and a variety of chronic disease conditions, demonstrating the heterogeneity of this pathology. Based on our further understanding of the cellular and molecular mechanisms underpinning tissue repair, new therapeutic approaches have recently been developed that target different aspects of the wound healing process and fibrosis. Nevertheless, several issues still need to be taken into consideration when designing modern wound healing drug delivery formulations. In this review, we highlight novel pharmacological agents that hold promise for targeting wound repair and fibrosis. We also focus on drug-delivery systems that may enhance current and future therapies.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Terapia Genética , Neoplasias/tratamiento farmacológico , Polímeros/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antineoplásicos/química , Portadores de Fármacos/química , Humanos , Liposomas/química , Liposomas/farmacología , Neoplasias/patología , Polímeros/química , Piel/efectos de los fármacos , Piel/patología , Cicatrización de Heridas/genética
4.
Cancer Res ; 78(11): 2939-2951, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29588349

RESUMEN

Although oncogenic activation of NFκB has been identified in various tumors, the NFκB-activating kinases (inhibitor of NFκB kinases, IKK) responsible for this are elusive. In this study, we determined the role of IKKα and IKKß in KRAS-mutant lung adenocarcinomas induced by the carcinogen urethane and by respiratory epithelial expression of oncogenic KRASG12D Using NFκB reporter mice and conditional deletions of IKKα and IKKß, we identified two distinct early and late activation phases of NFκB during chemical and genetic lung adenocarcinoma development, which were characterized by nuclear translocation of RelB, IκBß, and IKKα in tumor-initiated cells. IKKα was a cardinal tumor promoter in chemical and genetic KRAS-mutant lung adenocarcinoma, and respiratory epithelial IKKα-deficient mice were markedly protected from the disease. IKKα specifically cooperated with mutant KRAS for tumor induction in a cell-autonomous fashion, providing mutant cells with a survival advantage in vitro and in vivo IKKα was highly expressed in human lung adenocarcinoma, and a heat shock protein 90 inhibitor that blocks IKK function delivered superior effects against KRAS-mutant lung adenocarcinoma compared with a specific IKKß inhibitor. These results demonstrate an actionable requirement for IKKα in KRAS-mutant lung adenocarcinoma, marking the kinase as a therapeutic target against this disease.Significance: These findings report a novel requirement for IKKα in mutant KRAS lung tumor formation, with potential therapeutic applications. Cancer Res; 78(11); 2939-51. ©2018 AACR.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Quinasa I-kappa B/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Quinasa de Factor Nuclear kappa B
5.
EMBO Mol Med ; 9(5): 672-686, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28341702

RESUMEN

The lungs are frequently affected by cancer metastasis. Although NRAS mutations have been associated with metastatic potential, their exact role in lung homing is incompletely understood. We cross-examined the genotype of various tumor cells with their ability for automatic pulmonary dissemination, modulated NRAS expression using RNA interference and NRAS overexpression, identified NRAS signaling partners by microarray, and validated them using Cxcr1- and Cxcr2-deficient mice. Mouse models of spontaneous lung metastasis revealed that mutant or overexpressed NRAS promotes lung colonization by regulating interleukin-8-related chemokine expression, thereby initiating interactions between tumor cells, the pulmonary vasculature, and myeloid cells. Our results support a model where NRAS-mutant, chemokine-expressing circulating tumor cells target the CXCR1-expressing lung vasculature and recruit CXCR2-expressing myeloid cells to initiate metastasis. We further describe a clinically relevant approach to prevent NRAS-driven pulmonary metastasis by inhibiting chemokine signaling. In conclusion, NRAS promotes the colonization of the lungs by various tumor types in mouse models. IL-8-related chemokines, NRAS signaling partners in this process, may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.


Asunto(s)
GTP Fosfohidrolasas/genética , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/secundario , Pulmón/irrigación sanguínea , Proteínas de la Membrana/genética , Regulación hacia Arriba , Animales , Línea Celular Tumoral , GTP Fosfohidrolasas/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-8/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Proteínas de la Membrana/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de Unión al GTP Monoméricas , Mutación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA