Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 100(17): 7549-63, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27102126

RESUMEN

We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/enzimología , Hidroliasas/genética , Hidroliasas/metabolismo , Rhizobium leguminosarum/enzimología , Secuencia de Aminoácidos , Arabinosa/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconatos/metabolismo , Alineación de Secuencia , Xilosa/metabolismo
2.
Appl Microbiol Biotechnol ; 98(23): 9653-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25236800

RESUMEN

Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a L-arabinose/D-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP(+) but uses also NAD(+) as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards L-arabinose, D-galactose and D-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of L-arabinose, and the stable oxidation product detected is L-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear L-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for L-arabinose uptake, resulted in production of 18 g of L-arabonate per litre, at a rate of 248 mg of L-arabonate per litre per hour, with 86 % of the provided L-arabinose converted to L-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for L-arabonate production in yeast.


Asunto(s)
Arabinosa/metabolismo , Galactosa Deshidrogenasas/metabolismo , Rhizobium leguminosarum/enzimología , Saccharomyces cerevisiae/metabolismo , Azúcares Ácidos/metabolismo , Clonación Molecular , Coenzimas/metabolismo , Estabilidad de Enzimas , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/aislamiento & purificación , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , NAD/metabolismo , NADP/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rhizobium leguminosarum/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
3.
Arch Microbiol ; 189(4): 385-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18043907

RESUMEN

The regulation of flavohemoglobin expression is complex and depending on its host organism requires a wide variety of different transcriptional regulators. In Pseudomonas aeruginosa, the flavohemoglobin (Fhp) and its cognate regulator FhpR form an NO-sensing and detoxifying system regulated by their common bidirectional promoter Pfhp/PfhpR. The intergenic fhp-fhpR region of P. aeruginosa PAO1 was used as a bait to isolate proteins affecting the transcription of fhp and fhpR. In addition to the FhpR, we identified two previously uncharacterized P. aeruginosa proteins, PA0779 and PA3697. Both PA0779 and PA3697 were found to be essential for NO3(-) and NO2(-) induced Pfhp activity under aerobic and low-oxygen conditions, and needed for the full function of Pfhp/PfhpR as NO responsive regulatory circuit under aerobic conditions. In addition, we show that the transcriptional activity of PfhpR is highly inducible upon addition of SNP under aerobic conditions, but not by NO3(-), NO2(-) or under low-oxygen conditions, supporting the findings that FhpR is not the only factor affecting flavohemoglobin expression in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Hemoproteínas/genética , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Transcripción Genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Hemoproteínas/metabolismo , Datos de Secuencia Molecular , Mutación , Nitritos/metabolismo , Oxígeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA