Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Emerg Infect Dis ; 30(4): 738-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38478379

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses have potential to cross species barriers and cause pandemics. Since 2022, HPAI A(H5N1) belonging to the goose/Guangdong 2.3.4.4b hemagglutinin phylogenetic clade have infected poultry, wild birds, and mammals across North America. Continued circulation in birds and infection of multiple mammalian species with strains possessing adaptation mutations increase the risk for infection and subsequent reassortment with influenza A viruses endemic in swine. We assessed the susceptibility of swine to avian and mammalian HPAI H5N1 clade 2.3.4.4b strains using a pathogenesis and transmission model. All strains replicated in the lung of pigs and caused lesions consistent with influenza A infection. However, viral replication in the nasal cavity and transmission was only observed with mammalian isolates. Mammalian adaptation and reassortment may increase the risk for incursion and transmission of HPAI viruses in feral, backyard, or commercial swine.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Aves , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar , Mamíferos , Filogenia , Aves de Corral , Porcinos
2.
BMC Vet Res ; 19(1): 268, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087358

RESUMEN

BACKGROUND: Accurate measurement of disease associated with endemic bacterial agents in pig populations is challenging due to their commensal ecology, the lack of disease-specific antemortem diagnostic tests, and the polymicrobial nature of swine diagnostic cases. The main objective of this retrospective study was to estimate temporal patterns of agent detection and disease diagnosis for five endemic bacteria that can cause systemic disease in porcine tissue specimens submitted to the Iowa State University Veterinary Diagnostic Laboratory (ISU VDL) from 2017 to 2022. The study also explored the diagnostic value of specific tissue specimens for disease diagnosis, estimated the frequency of polymicrobial diagnosis, and evaluated the association between phase of pig production and disease diagnosis. RESULTS: S. suis and G. parasuis bronchopneumonia increased on average 6 and 4.3%, while S. suis endocarditis increased by 23% per year, respectively. M. hyorhinis and A. suis associated serositis increased yearly by 4.2 and 12.8%, respectively. A significant upward trend in M. hyorhinis arthritis cases was also observed. In contrast, M. hyosynoviae arthritis cases decreased by 33% average/year. Investigation into the diagnostic value of tissues showed that lungs were the most frequently submitted sample, However, the use of lung for systemic disease diagnosis requires caution due to the commensal nature of these agents in the respiratory system, compared to systemic sites that diagnosticians typically target. This study also explored associations between phase of production and specific diseases caused by each agent, showcasing the role of S. suis arthritis in suckling pigs, meningitis in early nursery and endocarditis in growing pigs, and the role of G. parasuis, A. suis, M. hyorhinis and M. hyosynoviae disease mainly in post-weaning phases. Finally, this study highlighted the high frequency of co-detection and -disease diagnosis with other infectious etiologies, such as PRRSV and IAV, demonstrating that to minimize the health impact of these endemic bacterial agents it is imperative to establish effective viral control programs. CONCLUSIONS: Results from this retrospective study demonstrated significant increases in disease diagnosis for S. suis, G. parasuis, M. hyorhinis, and A. suis, and a significant decrease in detection and disease diagnosis of M. hyosynoviae. High frequencies of interactions between these endemic agents and with viral pathogens was also demonstrated. Consequently, improved control programs are needed to mitigate the adverse effect of these endemic bacterial agents on swine health and wellbeing. This includes improving diagnostic procedures, developing more effective vaccine products, fine-tuning antimicrobial approaches, and managing viral co-infections.


Asunto(s)
Actinobacillus suis , Artritis , Endocarditis , Infecciones por Mycoplasma , Mycoplasma hyorhinis , Mycoplasma hyosynoviae , Streptococcus suis , Enfermedades de los Porcinos , Humanos , Porcinos , Animales , Infecciones por Mycoplasma/veterinaria , Iowa/epidemiología , Estudios Retrospectivos , Universidades , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/microbiología , Artritis/veterinaria , Endocarditis/veterinaria
3.
Emerg Infect Dis ; 28(1): 192-195, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34932445

RESUMEN

To evaluate trends in bacterial causes of valvular endocarditis in swine, we retrospectively analyzed 321 cases diagnosed at Iowa State University Veterinary Diagnostic Laboratory (Ames, IA, USA) during May 2015--April 2020. Streptococcus gallolyticus was the causative agent for 7.59% of cases. This emerging infection in swine could aid study of endocarditis in humans.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Infecciones Estreptocócicas , Animales , Endocarditis/epidemiología , Endocarditis/veterinaria , Endocarditis Bacteriana/epidemiología , Endocarditis Bacteriana/veterinaria , Estudios Retrospectivos , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/veterinaria , Streptococcus gallolyticus , Porcinos , Estados Unidos/epidemiología
4.
J Clin Microbiol ; 60(11): e0069722, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36222547

RESUMEN

Pestivirus K, commonly known as atypical porcine pestivirus (APPV), is the most common cause of congenital tremor (CT) in pigs. Currently, there is limited information on the infection dynamics of and immune response against APPV and no robust serologic assay to assess the effectiveness of preventative measures. To that end, known infection status samples were generated using experimental inoculation of cesarean-derived, colostrum-deprived pigs. Pigs (2 per pen) were inoculated with minimum essential medium (n = 6; negative control) or APPV (n = 16). Serum, pen-based oral fluid samples, and nasal swabs were collected through 70 days postinoculation (dpi). The immune response to recombinant APPV Erns, E2, or NS3 antigens was evaluated using both serum and oral fluids via indirect enzyme-linked immunosorbent assays (ELISAs). APPV was detected by real-time reverse transcription-PCR (RT-qPCR) in all oral fluid and serum samples from APPV-inoculated animals by 24 and 35 dpi, respectively. All samples remained genome positive until 70 dpi. Detection of nasal shedding was less consistent, with APPV being detected by RT-qPCR in all inoculated animals at 42, 49, and 56 dpi. Antibodies were first detected in oral fluids at 14 dpi, 10 days before serum detection, and concurrently with the first oral fluids RT-qPCR detection. Across sample types and time points, the Erns ELISA outperformed the other targets. In conclusion, both oral fluid and serum APPV Erns ELISAs can be used to economically evaluate the individual and herd status prior to and following intervention strategies.


Asunto(s)
Infecciones por Pestivirus , Pestivirus , Enfermedades de los Porcinos , Porcinos , Animales , Pestivirus/genética , Infecciones por Pestivirus/diagnóstico , Infecciones por Pestivirus/veterinaria , Enfermedades de los Porcinos/diagnóstico , Filogenia , Ensayo de Inmunoadsorción Enzimática
5.
Emerg Infect Dis ; 27(7): 1858-1866, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152961

RESUMEN

Morbilliviruses are highly contagious pathogens. The Morbillivirus genus includes measles virus, canine distemper virus (CDV), phocine distemper virus (PDV), peste des petits ruminants virus, rinderpest virus, and feline morbillivirus. We detected a novel porcine morbillivirus (PoMV) as a putative cause of fetal death, encephalitis, and placentitis among swine by using histopathology, metagenomic sequencing, and in situ hybridization. Phylogenetic analyses showed PoMV is most closely related to CDV (62.9% nt identities) and PDV (62.8% nt identities). We observed intranuclear inclusions in neurons and glial cells of swine fetuses with encephalitis. Cellular tropism is similar to other morbilliviruses, and PoMV viral RNA was detected in neurons, respiratory epithelium, and lymphocytes. This study provides fundamental knowledge concerning the pathology, genome composition, transmission, and cellular tropism of a novel pathogen within the genus Morbillivirus and opens the door to a new, applicable disease model to drive research forward.


Asunto(s)
Virus del Moquillo Canino , Encefalitis , Morbillivirus , Animales , Muerte Fetal , Filogenia , Porcinos
6.
J Gen Virol ; 102(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206034

RESUMEN

Recently, a novel PCV species (PCV3) has been detected in cases associated with sow mortality, lesions consistent with porcine dermatitis and nephropathy syndrome, reproductive failure and multisystemic inflammation. The pathogenesis and clinical significance of PCV3 is still unclear. In this study, we investigated the immunopathogenesis of PCV3 in CD/CD pigs. Four treatment groups, PCV3 (n=6), PCV3-KLH (n=6), control (n=3) and control-KLH (n=3), were included with PCV3-positive tissue homogenate (gc=3.38×1012 ml-1 and gc=1.04×1011 ml-1), confirmed by quantitative PCR (qPCR) and next-generation sequencing. Clinical signs, viremia, viral shedding, systemic cytokines, humoral (IgG) and T-cellular response were evaluated for 42 days. At necropsy, tissues were collected for histological evaluation and PCV3 detection by qPCR and in situ hybridization. No significant clinical signs were observed through the study. Viremia was detected in both PCV3-inoculated groups from 3 days post-inoculation (p.i.) until the end of the study. Nasal shedding was detected from 3 to 28 days p.i. and faecal shedding was transient. PCV3 induced an early (7 days p.i.) and sustained (42 days p.i.) IgG response. No significant T-cell response was observed. Histological evaluation demonstrated lesions consistent with multisystemic inflammation and perivasculitis. All tissues evaluated were positive by qPCR and virus replication was confirmed by positive in situ hybridization. This study demonstrated the potential role of PCV3 in subclinical infection, producing a mild, multisystemic inflammatory response, prolonged viremia detectable for 42 days p.i., presence of IgG humoral response and viral shedding in nasal secretions. More research is required to understand and elucidate potential co-factors necessary in the manifestation and severity of clinical disease.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/patogenicidad , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Animales , Anticuerpos Antivirales/sangre , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/patología , Infecciones por Circoviridae/virología , Circovirus/fisiología , Inmunoglobulina G/sangre , Inflamación , Nariz/virología , Porcinos , Enfermedades de los Porcinos/virología , Viremia/veterinaria , Viremia/virología , Replicación Viral , Esparcimiento de Virus
7.
Vet Pathol ; 58(3): 531-541, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33686884

RESUMEN

Swine dysentery (SD) is an enteric disease associated with strongly ß-hemolytic Brachyspira spp. that cause mucohemorrhagic diarrhea primarily in grower-finisher pigs. We characterized alteration of colonic mucin composition and local cytokine expression in the colon of pigs with acute SD after B. hyodysenteriae (Bhyo) infection and fed either a diet containing 30% distillers dried grains with solubles (DDGS) or a control diet. Colonic tissue samples from 9 noninoculated pigs (Control, N = 4; DDGS, N = 5) and 10 inoculated pigs experiencing acute SD (Bhyo, N = 4; Bhyo-DDGS, N = 6) were evaluated. At the apex of the spiral colon, histochemical staining with high-iron diamine-Alcian blue revealed increased sialomucin (P = .008) and decreased sulfomucin (P = .027) in Bhyo pigs relative to controls, with a dietary effect for sulfomucin. Noninoculated pigs fed DDGS had greater expression of sulfomucin (P = .002) compared to pigs fed the control diet. Immunohistochemically, there was de novo expression of mucin 5AC (MUC5AC) in the Bhyo group while mucin 2 (MUC2) expression was not significantly different between groups. RNA in situ hybridization to detect the pro-inflammatory cytokine IL-1ß often showed increased expression in the Bhyo group although without statistical significance, and this was not correlated with MUC5AC or MUC2 expression, suggesting IL-1ß is not a major regulator of their secretion in acute SD. Expression of the anti-inflammatory cytokine TGF-ß1 was significantly suppressed in the Bhyo group compared to controls (P = .005). This study reveals mucin and cytokine alterations in the colon of pigs with experimentally induced SD and related dietary effects of DDGS.


Asunto(s)
Disentería , Enfermedades de los Porcinos , Alimentación Animal/análisis , Animales , Colon , Citocinas/genética , Dieta , Disentería/veterinaria , Mucinas , Porcinos
8.
Vet Pathol ; 58(6): 1064-1074, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34657543

RESUMEN

Porcine astrovirus type 3 (PoAstV3) is an emerging virus in the family Astroviridae that has been recently associated with polioencephalomyelitis/encephalitis. Herein, we describe the experimental oral and intravenous inoculation of an infectious central nervous system (CNS) tissue homogenate containing PoAstV3 to cesarean-derived, colostrum-deprived pigs, and the subsequent development of clinical signs, histologic lesions, specific humoral immune response, and detection of viral particles by electron microscopy (EM) and viral RNA by RT-qPCR (reverse transcriptase quantitative polymerase chain reaction) and in situ hybridization (ISH). IgG against a portion of the PoAstV3 ORF2 capsid was first detected at 7 days post-inoculation (DPI) in 2 of 4 inoculated animals and in all inoculated animals by 14 DPI. At 21 and 28 DPI, 2 of 4 inoculated animals developed ataxia, tetraparesis, and/or lateral recumbency. All inoculated animals had histologic lesions in the CNS including perivascular lymphoplasmacytic cuffs, multifocal areas of gliosis with neuronal necrosis, satellitosis, and radiculoneuritis, and PoAstV3 RNA as detected by RT-qPCR within multiple anatomic regions of the CNS. Consistent viral structures were within the soma of a spinal cord neuron in the single pig examined by EM. Of note, PoAstV3 was not only detected by ISH in neurons of the cerebrum and spinal cord but also neurons of the dorsal root ganglion and nerve roots consistent with viral dissemination via axonal transport. This is the first study reproducing CNS disease with a porcine astrovirus strain consistent with natural infection, suggesting that pigs may serve as an animal model to study the pathogenesis of neurotropic astroviruses.


Asunto(s)
Infecciones por Astroviridae , Mamastrovirus , Enfermedades de los Porcinos , Animales , Infecciones por Astroviridae/veterinaria , Hibridación in Situ/veterinaria , Mamastrovirus/genética , Porcinos
9.
J Clin Microbiol ; 58(12)2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32967897

RESUMEN

Mycoplasma hyopneumoniae is an economically significant pathogen of swine. M. hyopneumoniae serum antibody detection via commercial enzyme-linked immunosorbent assays (ELISAs) is widely used for routine surveillance in commercial swine production systems. Samples from two studies were used to evaluate assay performance. In study 1, 6 commercial M. hyopneumoniae ELISAs were compared using serum samples from 8-week-old cesarean-derived, colostrum-deprived (CDCD) pigs allocated to the following 5 inoculation groups of 10 pigs each: (i) negative control, (ii) Mycoplasma flocculare (strain 27399), (iii) Mycoplasma hyorhinis (strain 38983), (iv) Mycoplasma hyosynoviae (strain 34428), and (v) M. hyopneumoniae (strain 232). Weekly serum and daily oral fluid samples were collected through 56 days postinoculation (dpi). The true status of pigs was established by PCR testing on oral fluids samples over the course of the observation period. Analysis of ELISA performance at various cutoffs found that the manufacturers' recommended cutoffs were diagnostically specific, i.e., produced no false positives, with the exceptions of 2 ELISAs. An analysis based on overall misclassification error rates found that 4 ELISAs performed similarly, although one assay produced more false positives. In study 2, the 3 best-performing ELISAs from study 1 were compared using serum samples generated under field conditions. Ten 8-week-old pigs were intratracheally inoculated with M. hyopneumoniae Matched serum and tracheal samples (to establish the true pig M. hyopneumoniae status) were collected at 7- to 14-day intervals through 98 dpi. Analyses of sensitivity and specificity showed similar performance among these 3 ELISAs. Overall, this study provides an assessment of the performance of current M. hyopneumoniae ELISAs and an understanding of their use in surveillance.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Anticuerpos Antibacterianos , Ensayo de Inmunoadsorción Enzimática , Mycoplasma , Neumonía Porcina por Mycoplasma/diagnóstico , Porcinos
10.
Vet Pathol ; 57(1): 82-89, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31551018

RESUMEN

In the past decade, different members of the genus Mamastrovirus have been associated with outbreaks of neurologic disease in humans, cattle, sheep, mink, and, most recently, porcine astrovirus 3 (PoAstV3) in swine. We performed a retrospective analysis of 50 cases of porcine neurologic disease of undetermined cause but with microscopic lesions compatible with a viral encephalomyelitis to better understand the role and pathogenesis of PoAstV3 infection. Nucleic acid was extracted from formalin-fixed paraffin-embedded (FFPE) tissue for reverse transcription quantitative polymerase chain reaction (RT-qPCR) testing for PoAstV3. In addition, 3 cases with confirmed PoAstV3-associated disease were assayed by RT-qPCR to investigate PoAstV3 tissue distribution. PoAstV3 was detected in central nervous system (CNS) tissue via RT-qPCR and in situ hybridization in 13 of 50 (26%) FFPE cases assayed. PoAstV3 was rarely detected in any tissues outside the CNS. Positive cases from the retrospective study included pigs in various production categories beginning in 2010, the earliest year samples were available. Based on these results, PoAstV3 appears to be a recurring putative cause of viral encephalomyelitis in swine that is rarely detected outside of the CNS at the time of clinical neurologic disease, unlike other common viral causes of neurologic disease in swine.


Asunto(s)
Infecciones por Astroviridae/veterinaria , Encefalomielitis/veterinaria , Mamastrovirus/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Infecciones por Astroviridae/patología , Infecciones por Astroviridae/virología , Encefalomielitis/patología , Encefalomielitis/virología , Femenino , Hibridación in Situ/veterinaria , Masculino , Mamastrovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estudios Retrospectivos , Porcinos , Enfermedades de los Porcinos/patología
11.
Emerg Infect Dis ; 25(7): 1377-1379, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31211677

RESUMEN

Salmonella enterica serotype I 4,[5],12:i:- has been increasingly isolated from swine. However, its pathogenic potential is not well characterized. Analysis of swine cases confirmed a strong positive association between isolation of I 4,[5],12:i:- and lesions of enteric salmonellosis and suggested a similar pathogenic potential as that for Salmonella Typhimurium.


Asunto(s)
Salmonelosis Animal/microbiología , Salmonella enterica/clasificación , Enfermedades de los Porcinos/microbiología , Animales , Biopsia , Microbiología de Alimentos , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Iowa/epidemiología , Vigilancia en Salud Pública , Salmonelosis Animal/diagnóstico , Salmonelosis Animal/epidemiología , Salmonella enterica/aislamiento & purificación , Serotipificación , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología
12.
Emerg Infect Dis ; 23(12): 2097-2100, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29148383
13.
Vet Immunol Immunopathol ; 273: 110787, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815504

RESUMEN

Influenza A virus (IAV) is a major pathogen in the swine industry. Whole-inactivated virus (WIV) vaccines in swine are highly effective against homologous viruses but provide limited protection to antigenically divergent viruses and may lead to vaccine-associated enhanced respiratory disease (VAERD) after heterologous infection. Although VAERD is reproducible in laboratory studies, clinical diagnosis is challenging, as it would require both knowledge of prior vaccine history and evidence of severe disease by assessment of pathologic lesions at necropsy following infection with a heterologous virus. The objective of this study was to identify potential biomarkers for VAERD for antemortem clinical diagnosis. Naïve pigs were split into two groups, and one group was vaccinated with IAV WIV vaccine. All pigs were then challenged with a heterologous virus to induce VAERD in the vaccinated group and necropsied at 5 days post infection (dpi). Blood was collected on 0, 1, 3, and 5 dpi, and assessed by hematology, plasma chemistry, acute phase proteins, and citrullinated H3 histone (CitH3) assays. Additionally, cytokine and CitH3 levels were assessed in bronchoalveolar lavage fluid (BALF) collected at necropsy. Compared to nonvaccinated challenged pigs, blood collected from vaccinated and challenged (V/C) pigs with VAERD had elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin acute phase proteins, and elevated CitH3. In BALF, the proinflammatory cytokine IL-8 and CitH3 were elevated in V/C pigs. In conclusion, a profile of elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin, and elevated CitH3 may be relevant for a clinical antemortem IAV VAERD diagnosis.


Asunto(s)
Biomarcadores , Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Vacunas contra la Influenza/inmunología , Biomarcadores/sangre , Virus de la Influenza A/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Citocinas/sangre , Vacunas de Productos Inactivados/inmunología
14.
Vet Microbiol ; 290: 109999, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280306

RESUMEN

Mycoplasma hyorhinis (Mhr) and M. hyosynoviae (Mhs) are commensal organisms of the upper respiratory tract and tonsils but may also cause arthritis in pigs. In this study, 8-week-old cesarean-derived colostrum-deprived (CDCD) pigs (n = 30; 3 groups, 10 pigs per group, 2 pigs per pen) were inoculated with Mhr, Mhs, or mock-inoculated with culture medium and then pen-based oral fluids were collected at different time points over the 56 days of the experimental study. Oral fluids tested by Mhr and Mhs quantitative real-time PCRs revealed Mhr DNA between day post inoculation (DPI) 5-52 and Mhs DNA between DPI 5-15. Oral fluids were likewise tested for antibody using isotype-specific (IgG, IgA, IgM) indirect ELISAs based on a recombinant chimeric polypeptide of variable lipoproteins (A-G) for Mhr and Tween 20-extracted surface proteins for Mhs. Mhr IgA was detected at DPI 7 and, relative to the control group, significant (p < 0.05) antibody responses were detected in the Mhr group between DPI 12-15 for IgM and DPI 36-56 for both IgA and IgG. In the Mhs group, IgM was detected at DPI 10 and significant (p < 0.05) IgG and IgA responses were detected at DPI 32-56 and DPI 44-56, respectively. This study demonstrated that oral fluid could serve as an effective and convenient antemortem sample for monitoring Mhr and Mhs in swine populations.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma hyorhinis , Enfermedades de los Porcinos , Porcinos , Animales , Mycoplasma hyorhinis/genética , Enfermedades de los Porcinos/microbiología , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/microbiología , Formación de Anticuerpos , Derrame de Bacterias , Inmunoglobulina M , Inmunoglobulina A , ADN , Inmunoglobulina G
15.
Vet Immunol Immunopathol ; 272: 110768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703559

RESUMEN

The Mycoplasma hyorhinis (Mhr) variable lipoprotein (Vlp) family, comprising Vlps A, B, C, D, E, F, and G, are highly variable in expression, size, and cytoadhesion capabilities across Mhr strains. The 'Vlp system' plays a crucial role in cytoadhesion, immune evasion, and in eliciting a host immunologic response. This pilot study described the development of Vlp peptide-based ELISAs to evaluate the antigenic reactivity of individual Vlps against Mhr antisera collected throughout a longitudinal study focused on Mhr strain 38983, reproducing Mhr-associated disease under experimental conditions. Specifically, serum samples were collected at day post-inoculation 0, 7, 10, 14, 17, 21, 24, 28, 35, 42, 49, and 56 from Mhr- and mock (Friis medium)-inoculated cesarean-derived, colostrum-deprived pigs. Significant Mhr-specific IgG responses were detected at specific time points throughout the infection, with some variations for each Vlp. Overall, individual Vlp ELISAs showed consistently high accuracy rates, except for VlpD, which would likely be associated with its expression levels or the anti-Vlp humoral immune response specific to the Mhr strain used in this study. This study provides the basis and tools for a more refined understanding of these Vlp- and Mhr strain-specific variations, which is foundational in understanding the host immune response to Mhr.


Asunto(s)
Lipoproteínas , Infecciones por Mycoplasma , Mycoplasma hyorhinis , Animales , Lipoproteínas/inmunología , Mycoplasma hyorhinis/inmunología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/veterinaria , Porcinos/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Proyectos Piloto , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Femenino , Proteínas Bacterianas/inmunología , Estudios Longitudinales
16.
Microbes Infect ; 25(7): 105169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37295769

RESUMEN

Influenza A virus (IAV) in the human and swine host infects epithelial cells lining the respiratory tract causing a necrotizing bronchitis and bronchiolitis. These epithelial surfaces are protected by large glycoproteins called mucins. Mucin 4 (MUC4) is a transmembrane mucin that consists of an alpha subunit responsible for surface protection and intracellular beta subunit involved in signal transduction which repress apoptosis and stimulate epithelial proliferation. This study was designed to determine the expression and potential role of MUC4 during IAV infection. We used immunohistochemistry in combination with machine learning image analysis to quantify differential protein expression of MUC4 subunits in IAV-infected and uninfected lung in a porcine model. MUC4 protein basal expression in control animals varied significantly by litter. MUC4 protein expression was significantly increased in bronchioles with necrotizing bronchiolitis compared to histologically normal bronchioles, likely representing a regenerative response to restore mucosal integrity of conducting airways. Understanding the impact of differential MUC4 expression among healthy individuals and during IAV infection will facilitate control strategies by elucidating mechanisms associated with susceptibility to IAV that can be therapeutically or genetically regulated and may be extended to other respiratory diseases.


Asunto(s)
Bronquiolitis , Virus de la Influenza A , Gripe Humana , Humanos , Animales , Porcinos , Mucina 4 , Mucinas/metabolismo , Virus de la Influenza A/metabolismo , Pulmón/metabolismo
17.
Front Vet Sci ; 10: 1186554, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781286

RESUMEN

Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.

18.
Front Genome Ed ; 5: 1320180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38883409

RESUMEN

Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of TMPRSS2 gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of TMPRSS2 will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in TMPRSS2 knockout (TMPRSS2 -/-) pigs. We demonstrated that TMPRSS2 was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and TMPRSS2 -/- pigs. However, the TMPRSS2 -/- pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.

19.
Viruses ; 15(8)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37632109

RESUMEN

Atypical porcine pestivirus (APPV) was found to be associated with pigs demonstrating congenital tremors (CT), and clinical signs in pigs have been reproduced after experimental challenge. Subsequently, APPV has been identified in both symptomatic and asymptomatic swine of all ages globally. The objective of this research was to perform a longitudinal study following two cohorts of pigs, those born in litters with pigs exhibiting CT and those born in litters without CT, to analyze the virus and antibody dynamics of APPV infection in serum from birth to market. There was a wide range in the percentage of affected pigs (8-75%) within CT-positive litters. After co-mingling with CT-positive litters at weaning, pigs from CT-negative litters developed viremia that was cleared after approximately 2 months, with the majority seroconverting by the end of the study. In contrast, a greater percentage of pigs exhibiting CT remained PCR positive throughout the growing phase, with less than one-third of these animals seroconverting. APPV RNA was present in multiple tissues from pigs in both groups at the time of marketing. This study improved our understanding of the infection dynamics of APPV in swine and the impact that the immune status and timing of infection have on the persistence of APPV in serum and tissues.


Asunto(s)
Anticuerpos , Pestivirus , Animales , Porcinos , Estudios Longitudinales , Pestivirus/genética , Reacción en Cadena de la Polimerasa , Temblor/veterinaria
20.
Transbound Emerg Dis ; 69(2): 753-763, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33621429

RESUMEN

Atypical porcine pestivirus (APPV), a highly divergent pestivirus, has a wide geographical distribution around the world. APPV is known to cause type A-II congenital tremors in newborn piglets. The main objective of this study is to access APPV prevalence in the US swine herds utilizing a newly developed quantitative real-time RT-PCR assay. Retrospective analysis of 1,785 samples revealed a 19.0% prevalence in Midwest swine herds over a period of three years (2016-2018). Among all clinical and field samples that were APPV positive, 82 samples (24.19%) were also positive for one or more swine viral pathogens. Two APPV US strains identified in this study demonstrated significant sequence diversity (~12% in full genome) compared to the first reported APPV strain from the United States in 2014. Of the two strains identified in this study, USA/023005/2016 is closer to two strains identified in Germany, and USA/047310/2017 shares more similarities with two US strains including Minnesota-1 and ISDVDL2014016573. Partial NS5B sequences (9127-9836 nt of the polyprotein gene) obtained from 54 APPV-positive samples revealed considerable sequence diversity, ranging from 85.8% to 100% nucleotide identity, within the US strains in samples from different geographic regions. Analysis of all US samples indicates high prevalence of APPV in Minnesota (37.35%), followed by Illinois (32.86%), Iowa (30.60%) and Kansas (21.89%). APPV was detected in 15.48% of samples assayed from 2017, slightly higher than that in 2016 (13.08%), but much lower than 2018 (28.77%). Among the various sample types tested, oral fluid samples had the highest prevalence and lowest average Ct value suggesting their suitability as a reliable diagnostic specimen for APPV detection. Overall, sequence variation among APPV strains and prevalence of the pathogen within the United States provides a basis for understanding the genetic diversity and molecular epidemiology of APPV in the US swine herds.


Asunto(s)
Infecciones por Pestivirus , Pestivirus , Enfermedades de los Porcinos , Animales , Variación Genética , Pestivirus/genética , Infecciones por Pestivirus/veterinaria , Filogenia , Prevalencia , Estudios Retrospectivos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA