Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 183(1): 1-3, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007260

RESUMEN

The pandemic has impacted every scientist differently. Many negative impacts are frequently discussed. Here we highlight unexpected positives that we have found and hope will persist: improved access to experts; deeper and broader human engagement among colleagues, collaborators, and competitors; and significant democratization of research.


Asunto(s)
COVID-19/psicología , Pandemias/ética , Humanos , Optimismo/psicología , SARS-CoV-2/patogenicidad
2.
J Biol Chem ; 294(26): 10131-10145, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31076506

RESUMEN

Dysfunction of human phenylalanine hydroxylase (hPAH, EC 1.14.16.1) is the primary cause of phenylketonuria, the most common inborn error of amino acid metabolism. The dynamic domain rearrangements of this multimeric protein have thwarted structural study of the full-length form for decades, until now. In this study, a tractable C29S variant of hPAH (C29S) yielded a 3.06 Å resolution crystal structure of the tetrameric resting-state conformation. We used size-exclusion chromatography in line with small-angle X-ray scattering (SEC-SAXS) to analyze the full-length hPAH solution structure both in the presence and absence of Phe, which serves as both substrate and allosteric activators. Allosteric Phe binding favors accumulation of an activated PAH tetramer conformation, which is biophysically distinct in solution. Protein characterization with enzyme kinetics and intrinsic fluorescence revealed that the C29S variant and hPAH are otherwise equivalent in their response to Phe, further supported by their behavior on various chromatography resins and by analytical ultracentrifugation. Modeling of resting-state and activated forms of C29S against SAXS data with available structural data created and evaluated several new models for the transition between the architecturally distinct conformations of PAH and highlighted unique intra- and inter-subunit interactions. Three best-fitting alternative models all placed the allosteric Phe-binding module 8-10 Å farther from the tetramer center than do all previous models. The structural insights into allosteric activation of hPAH reported here may help inform ongoing efforts to treat phenylketonuria with novel therapeutic approaches.


Asunto(s)
Fenilalanina Hidroxilasa/química , Fenilalanina/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Regulación Alostérica , Biofisica , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fenilalanina/química , Fenilalanina Hidroxilasa/metabolismo , Unión Proteica
3.
J Biol Chem ; 293(51): 19532-19543, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30287685

RESUMEN

Phenylalanine hydroxylase (PAH) regulates phenylalanine (Phe) levels in mammals to prevent neurotoxicity resulting from high Phe concentrations as observed in genetic disorders leading to hyperphenylalaninemia and phenylketonuria. PAH senses elevated Phe concentrations by transient allosteric Phe binding to a protein-protein interface between ACT domains of different subunits in a PAH tetramer. This interface is present in an activated PAH (A-PAH) tetramer and absent in a resting-state PAH (RS-PAH) tetramer. To investigate this allosteric sensing mechanism, here we used the GROMACS molecular dynamics simulation suite on the Folding@home computing platform to perform extensive molecular simulations and Markov state model (MSM) analysis of Phe binding to ACT domain dimers. These simulations strongly implicated a conformational selection mechanism for Phe association with ACT domain dimers and revealed protein motions that act as a gating mechanism for Phe binding. The MSMs also illuminate a highly mobile hairpin loop, consistent with experimental findings also presented here that the PAH variant L72W does not shift the PAH structural equilibrium toward the activated state. Finally, simulations of ACT domain monomers are presented, in which spontaneous transitions between resting-state and activated conformations are observed, also consistent with a mechanism of conformational selection. These mechanistic details provide detailed insight into the regulation of PAH activation and provide testable hypotheses for the development of new allosteric effectors to correct structural and functional defects in PAH.


Asunto(s)
Modelos Moleculares , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Humanos , Mutación , Fenilalanina Hidroxilasa/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Cuaternaria de Proteína
4.
Proc Natl Acad Sci U S A ; 113(9): 2394-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884182

RESUMEN

Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73-82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype-phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phe-stabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype-phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.


Asunto(s)
Biopolímeros/química , Fenilalanina Hidroxilasa/química , Animales , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Ratas
5.
Biochimie ; 183: 63-77, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33221376

RESUMEN

Phenylalanine hydroxylase (PAH) is an allosteric enzyme that maintains phenylalanine (Phe) below neurotoxic levels; its failure results in phenylketonuria, an inborn error of amino acid metabolism. Wild type (WT) PAH equilibrates among resting-state (RS-PAH) and activated (A-PAH) conformations, whose equilibrium position depends upon allosteric Phe binding. The RS-PAH conformation of WT rat PAH (rPAH) contains a cation-π sandwich involving Phe80 that cannot exist in the A-PAH conformation. Phe80 variants F80A, F80D, F80L, and F80R were prepared and evaluated using native PAGE, size exclusion chromatography, ion exchange behavior, intrinsic protein fluorescence, enzyme kinetics, and limited proteolysis, each as a function of [Phe]. Like WT rPAH, F80A and F80D show allosteric activation by Phe while F80L and F80R are constitutively active. Maximal activity of all variants suggests relief of a rate-determining conformational change. Limited proteolysis of WT rPAH (minus Phe) reveals facile cleavage within a 4-helix bundle that is buried in the RS-PAH tetramer interface, reflecting dynamic dissociation of that tetramer. This cleavage is not seen for the Phe80 variants, which all show proteolytic hypersensitivity in a linker that repositions during the RS-PAH to A-PAH interchange. Hypersensitivity is corrected by addition of Phe such that all variants become like WT rPAH and achieve the A-PAH conformation. Thus, manipulation of Phe80 perturbs the conformational space sampled by PAH, increasing sampling of on-pathway intermediates in the RS-PAH and A-PAH interchange. The behavior of the Phe80 variants mimics that of disease-associated R68S and suggests a molecular basis for proteolytic susceptibility in PKU-associated human PAH variants.


Asunto(s)
Mutación Missense , Fenilalanina Hidroxilasa/química , Multimerización de Proteína , Sustitución de Aminoácidos , Animales , Estabilidad de Enzimas , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/enzimología , Fenilcetonurias/genética , Conformación Proteica en Hélice alfa , Estructura Cuaternaria de Proteína , Ratas
6.
J Mol Biol ; 381(1): 174-88, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18586269

RESUMEN

The multifunctional Escherichia coli proline utilization A (PutA) flavoprotein functions both as a membrane-associated proline catabolic enzyme and as a transcriptional repressor of the proline utilization genes putA and putP. To better understand the mechanism of transcriptional regulation by PutA, we have mapped the put-regulatory region, determined a crystal structure of the PutA ribbon-helix-helix domain (PutA52, a polypeptide corresponding to residues 1-52 of E. coli PutA) complexed with DNA, and examined the thermodynamics of DNA binding to PutA52. Five operator sites, each containing the sequence motif 5'-GTTGCA-3', were identified using gel-shift analysis. Three of the sites are shown to be critical for repression of putA, whereas the two other sites are important for repression of putP. The 2.25-A-resolution crystal structure of PutA52 bound to one of the operators (operator 2; 21 bp) shows that the protein contacts a 9-bp fragment corresponding to the GTTGCA consensus motif plus three flanking base pairs. Since the operator sequences differ in flanking bases, the structure implies that PutA may have different affinities for the five operators. This hypothesis was explored using isothermal titration calorimetry. The binding of PutA52 to operator 2 is exothermic, with an enthalpy of -1.8 kcal/mol and a dissociation constant of 210 nM. Substitution of the flanking bases of operator 4 into operator 2 results in an unfavorable enthalpy of 0.2 kcal/mol and a 15-fold-lower affinity, showing that base pairs outside of the consensus motif impact binding. Structural and thermodynamic data suggest that hydrogen bonds between Lys9 and bases adjacent to the GTTGCA motif contribute to transcriptional regulation by fine-tuning the affinity of PutA for put control operators.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Prolina/metabolismo , Regulón/genética , Transcripción Genética/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Modelos Moleculares , Conformación de Ácido Nucleico , Oxígeno/química , Oxígeno/metabolismo , Prolina/genética , Unión Proteica , Estructura Terciaria de Proteína , Simportadores/genética , Simportadores/metabolismo , Volumetría , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA