Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(6): 2947-2957, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35718541

RESUMEN

Humans assess the distributions of resources based on their aversion to unfairness. If a partner distributes in an unfair manner even though the partner had a less unfair distribution option, a recipient will believe that the partner should have chosen the counterfactual option. In this study, we investigated the neural basis for fairness evaluation of actual and counterfactual options in the ultimatum game. In this task, a partner chose one distribution option out of two options, and a participant accepted or rejected the option. The behavioral results showed that the acceptance rate was influenced by counterfactual evaluation (CE), among others, as defined by the difference of monetary amount between the actual and counterfactual options. The functional magnetic resonance imaging results showed that CE was associated with the right ventral angular gyrus (vAG) that provided one of convergent inputs to the supramarginal gyrus related to decision utility, which reflects gross preferences for the distribution options. Furthermore, inhibitory repetitive transcranial magnetic stimulation administered to the right vAG reduced the behavioral component associated with CE. These results suggest that our acceptance/rejection of distribution options relies on multiple processes (monetary amount, disadvantageous inequity, and CE) and that the right vAG causally contributes to CE.


Asunto(s)
Toma de Decisiones , Estimulación Magnética Transcraneal , Humanos , Toma de Decisiones/fisiología , Conducta Social , Imagen por Resonancia Magnética , Juegos Experimentales
2.
Cereb Cortex ; 33(23): 11225-11234, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37757477

RESUMEN

Insulin resistance may lead to structural and functional abnormalities of the human brain. However, the mechanism by which insulin resistance impairs the brain remains elusive. In this study, we used two large neuroimaging databases to investigate the brain regions where insulin resistance was associated with the gray matter volume and to examine the resting-state functional connectivity between these brain regions and each hypothalamic nucleus. Insulin resistance was associated with reduced gray matter volume in the regions of the default-mode and limbic networks in the cerebral cortex in older adults. Resting-state functional connectivity was prominent between these networks and the paraventricular nucleus of the hypothalamus, a hypothalamic interface connecting functionally with the cerebral cortex. Furthermore, we found a significant correlation in these networks between insulin resistance-related gray matter volume reduction and network paraventricular nucleus of the hypothalamus resting-state functional connectivity. These results suggest that insulin resistance-related gray matter volume reduction in the default-mode and limbic networks emerged through metabolic homeostasis mechanisms in the hypothalamus.


Asunto(s)
Sustancia Gris , Resistencia a la Insulina , Humanos , Anciano , Sustancia Gris/diagnóstico por imagen , Red en Modo Predeterminado , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Corteza Cerebral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA