Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phys Chem Chem Phys ; 19(30): 19707-19721, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28530728

RESUMEN

Coulomb explosion of diiodomethane CH2I2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH3I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH2I2 in comparison to CH3I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH2I2. The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10 fs.

2.
Opt Express ; 22(16): 19692-706, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25321053

RESUMEN

Tightly-focused laser beams that carry angular momentum have been used to trap and rotate microrotors. In particular, a Laguerre-Gauss mode laser beam can be used to transfer its orbital angular momentum to drive microrotors. We increase the torque efficiency by a factor of about 2 by designing the rotor such that its geometry is compatible with the driving beam, when driving the rotation with the optimum beam, rather than beams of higher or lower orbital angular momentum. Based on Floquet's theorem, the order of discrete rotational symmetry of the rotor can be made to couple with the azimuthal mode of the Laguerre-Gauss beam. We design corrugated donut rotors, that have a flat disc-like profile, with the help of the discrete dipole approximation and the T-matrix methods in parallel with experimental demonstrations of stable trapping and torque measurement. We produce and test such a rotor using two-photon photopolymerization. With a rotor that has 8-fold discrete rotational symmetry, an outer radius of 1.85 µm and a hollow core radius of 0.5 µm, we were able to transfer approximately 0.3 h̄ per photon of the orbital angular momentum from an LG04 beam.

3.
Opt Express ; 19(25): 25134-43, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22273904

RESUMEN

We describe a simple microrheology method to measure the viscosity coefficients of lyotropic liquid crystals. This approach is based on the use of a rotating laser-trapped optically anisotropic microsphere. In aligned liquid crystals that have negligible effect on trapping beam's polarization, the optical torque is transferred from circularly polarized laser trapping beam to the optically anisotropic microparticle and creates the shear flow in the liquid crystalline fluid. The balance of optical and viscous torques yields the local effective viscosity coefficients of the studied lyotropic systems in cholesteric and lamellar phases. This simple yet powerful method is capable of probing viscosity of complex anisotropic fluids for small amounts of sample and even in the presence of defects that obstruct the use of conventional rheology techniques.


Asunto(s)
Cristales Líquidos/química , Ensayo de Materiales/métodos , Nefelometría y Turbidimetría/métodos , Microesferas , Rotación , Viscosidad
4.
Med Phys ; 46(10): e726-e734, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31357243

RESUMEN

Recently developed short-pulsed laser sources garner high dose-rate beams such as energetic ions and electrons, x rays, and gamma rays. The biological effects of laser-generated ion beams observed in recent studies are different from those triggered by radiation generated using classical accelerators or sources, and this difference can be used to develop new strategies for cancer radiotherapy. High-power lasers can now deliver particles in doses of up to several Gy within nanoseconds. The fast interaction of laser-generated particles with cells alters cell viability via distinct molecular pathways compared to traditional, prolonged radiation exposure. The emerging consensus of recent literature is that the differences are due to the timescales on which reactive molecules are generated and persist, in various forms. Suitable molecular markers have to be adopted to monitor radiation effects, addressing relevant endogenous molecules that are accessible for investigation by noninvasive procedures and enable translation to clinical imaging. High sensitivity has to be attained for imaging molecular biomarkers in cells and in vivo to follow radiation-induced functional changes. Signal-enhanced MRI biomarkers enriched with stable magnetic nuclear isotopes can be used to monitor radiation effects, as demonstrated recently by the use of dynamic nuclear polarization (DNP) for biomolecular observations in vivo. In this context, nanoparticles can also be used as radiation enhancers or biomarker carriers. The radiobiology-relevant features of high dose-rate secondary radiation generated using high-power lasers and the importance of noninvasive biomarkers for real-time monitoring the biological effects of radiation early on during radiation pulse sequences are discussed.


Asunto(s)
Biomarcadores/metabolismo , Rayos Láser , Imagen Molecular/métodos , Dosis de Radiación , Humanos , Fenómenos Magnéticos , Fotones
5.
Nat Commun ; 10(1): 2186, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097703

RESUMEN

The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.

6.
Life Sci Space Res (Amst) ; 19: 68-75, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30482285

RESUMEN

One of the specific properties of laser-driven radiation is a broadband energy spectrum, which is also a feature of the space radiation fields. This property can be used in materials science studies or radiobiology experiments to simulate the energy spectrum of space radiation exposures in a ground-based laboratory. However, the differences in effects between the higher dose rates of laser generated radiation and the lower dose rates of space radiation have to be investigated in separate, prior studies. A design for a high-throughput irradiation experiment and the associated Monte Carlo dose calculations for a broadband energy proton beam depositing energy in a cell monolayer is presented. Dose control and dose uniformity in the cell monolayer was achieved in the simulations using a variable thickness Ni attenuator. A set of target doses from 0.2 Gy to 4 Gy was obtained and dose uniformity was optimized to less than 4% variability. This work opens the possibility of single or multiple exposures, controllable, high-throughput irradiation experiments on biological samples or materials, using broadband energy particle beams generated by lasers, with relevance for space applications.


Asunto(s)
Células/efectos de la radiación , Radiometría/métodos , Vuelo Espacial , Células/citología , Células Cultivadas , Humanos , Rayos Láser , Método de Montecarlo , Aceleradores de Partículas , Protones , Dosis de Radiación
7.
Chem Commun (Camb) ; (12): 1264-5, 2002 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-12109107

RESUMEN

A third generation poly(propylene imine) dendrimer modified with pi-conjugated oligo(p-phenylenevinylene)s forms spherical and rod-like aggregates that can be manipulated by optical tweezers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA