Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Res ; 255: 119138, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750999

RESUMEN

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Asunto(s)
Riego Agrícola , Oryza , Suelo , Oryza/crecimiento & desarrollo , Riego Agrícola/métodos , Suelo/química , Carbono/análisis , Fósforo/análisis , Agua , Biomasa , Microbiología del Suelo
2.
Environ Geochem Health ; 46(8): 262, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926193

RESUMEN

This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe0-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characterization results, the specific surface area of Fe0-CMC measured by the Brunauer-Emmett-Teller analysis were 39.6 m2/g. In addition, Scanning Electron Microscopy images displayed that spherical nano zero-valent iron particles (nZVI) with an average particle diameter of 80 nm are surrounded by carboxymethyl cellulose and no noticeable aggregates were detected. Batch experiments assessed Fe0-CMC's effectiveness in nitrate removal under diverse conditions including different adsorbent dosages (Cs, 2-10 mg/L), contact time (t, 10-1440 min), initial pH (pHi, 2-10), temperature (T, 10-55 °C), and initial concentration of nitrate (C0, 10-500 mg/L). Results indicated decreased removal with higher initial pHi and C0, while increased Cs and T enhanced removal. The study of nitrate removal mechanism by Fe0-CMC revealed that the redox reaction between immobilized nZVI on the CMC surface and nitrate ions was responsible for nitrate removal, and the main product of this reaction was ammonium, which was subsequently completely removed by the synthesized nanocomposite. In addition, a stable deviation quantum particle swarm optimization algorithm (SD-QPSO) and a least square error method were employed to train the ANFIS parameters. To demonstrate model performance, a quadratic polynomial function was proposed to display the performance of the SD-QPSO algorithm in which the constant parameters were optimized through the SD-QPSO algorithm. Sensitivity analysis was conducted on the proposed quadratic polynomial function by adding a constant deviation and removing each input using two different strategies. According to the sensitivity analysis, the predicted removal efficiency was most sensitive to changes in pHi, followed by Cs, T, C0, and t. The obtained results underscore the potential of the ANFIS model (R2 = 0.99803, RMSE = 0.9888), and polynomial function (R2 = 0.998256, RMSE = 1.7532) as accurate and efficient alternatives to time-consuming laboratory measurements for assessing nitrate removal efficiency. These models can offer rapid insights and predictions regarding the impact of various factors on the process, saving both time and resources.


Asunto(s)
Inteligencia Artificial , Carboximetilcelulosa de Sodio , Hierro , Nanopartículas del Metal , Nitratos , Contaminantes Químicos del Agua , Carboximetilcelulosa de Sodio/química , Nitratos/química , Hierro/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Adsorción , Purificación del Agua/métodos , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Modelos Químicos
3.
Environ Res ; 217: 114844, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403653

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Biodegradación Ambiental , Fluorocarburos/análisis , Agua , Bioacumulación , Suelo/química , Contaminantes Químicos del Agua/análisis
4.
Ecotoxicol Environ Saf ; 263: 115228, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423198

RESUMEN

The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.


Asunto(s)
Contaminantes Ambientales , Oryza , Suelo/química , Agricultura , Carbón Orgánico , Carbono , Fertilizantes
5.
Ecotoxicol Environ Saf ; 268: 115676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979355

RESUMEN

Plastic pollution has emerged as a global challenge affecting ecosystem health and biodiversity conservation. Terrestrial environments exhibit significantly higher plastic concentrations compared to aquatic systems. Micro/nano plastics (MNPs) have the potential to disrupt soil biology, alter soil properties, and influence soil-borne pathogens and roundworms. However, limited research has explored the presence and impact of MNPs on aquaculture systems. MNPs have been found to inhibit plant and seedling growth and affect gene expression, leading to cytogenotoxicity through increased oxygen radical production. The article discusses the potential phytotoxicity process caused by large-scale microplastics, particularly those unable to penetrate cell pores. It also examines the available data, albeit limited, to assess the potential risks to human health through plant uptake.


Asunto(s)
Ecosistema , Plásticos , Humanos , Plásticos/toxicidad , Transporte Biológico , Plantones , Suelo
6.
Environ Monit Assess ; 195(6): 795, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264257

RESUMEN

In the race for economic development and prosperity, our earth is becoming more polluted with each passing day. Technological advances in agriculture and rapid industrialization have drastically polluted the two pillars of natural resources, land and water. Toxic chemicals and microbial contaminants/agents created by natural and anthropogenic activities are rapidly becoming environmental hazards (EH) with increased potential to affect the natural environment and human health. This review has attempted to describe the various agents (chemical, biological, and physical) responsible for environmental contamination, remediation methods, and risk assessment techniques (RA). The main focus is on finding ways to mitigate the harmful effects of EHs through the simultaneous application of remediation methods and RA for sustainable development. It is recommended to apply the combination of different remediation methods using RA techniques to promote recycling and reuse of different resources for sustainable development. The report advocates for the development of site-specific, farmer-driven, sequential, and plant-based remediation strategies along with policy support for effective decontamination. This review also focuses on the fact that the lack of knowledge about environmental health is directly related to public health risks and, therefore, focuses on promoting awareness of effective ways to reduce anthropological burden and pollution and on providing valuable data that can be used in environmental monitoring assessments and lead to sustainable development.


Asunto(s)
Monitoreo del Ambiente , Restauración y Remediación Ambiental , Humanos , Desarrollo Sostenible , Contaminación Ambiental/prevención & control , Medición de Riesgo , Salud Pública
7.
Molecules ; 27(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558132

RESUMEN

Essential oils (EOs) and plant extracts are sources of beneficial chemical compounds that have potential applications in medicine, food, cosmetics, and the agriculture industry. Plant medicines were the only option for preventing and treating mankind's diseases for centuries. Therefore, plant products are fundamental sources for producing natural drugs. The extraction of the EOs is the first important step in preparing these compounds. Modern extraction methods are effective in the efficient development of these compounds. Moreover, the compounds extracted from plants have natural antimicrobial activity against many spoilage and disease-causing bacteria. Also, the use of plant compounds in cosmetics and hygiene products, in addition to their high marketability, has been helpful for many beauty problems. On the other hand, the agricultural industry has recently shifted more from conventional production systems to authenticated organic production systems, as consumers prefer products without any pesticide and herbicide residues, and certified organic products command higher prices. EOs and plant extracts can be utilized as ingredients in plant antipathogens, biopesticides, and bioherbicides for the agricultural sector. Considering the need and the importance of using EOs and plant extracts in pharmaceutical and other industries, this review paper outlines the different aspects of the applications of these compounds in various sectors.


Asunto(s)
Cosméticos , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/química , Bacterias , Cosméticos/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/química
8.
Environ Geochem Health ; 44(4): 1329-1354, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34476637

RESUMEN

The fast pace of increasing human population has led to enhanced crop production, due to which a significant increase in the application of pesticides has been recorded worldwide. Following the enhancement in the utilization of pesticides, the degree of environmental pollution, particularly soil pollution, has increased. To address this challenge, different methods of controlling and eliminating such contaminants have been proposed. Various methods have been reported to eradicate or reduce the degree of contamination of pesticides in the soil. Several factors are crucial for soil contamination, including pH, temperature, the number, and type/nature of soil microorganisms. Among the accessible techniques, some of them respond better to contamination removal. One of these methods is bioremediation, and it is one of the ideal solutions for pollution reduction. In this innovative technique, microorganisms are utilized to decompose environmental pollutants or to curb pollution. This paper gives detailed insight into various strategies used for the reduction and removal of soil pollution.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Biodegradación Ambiental , Humanos , Plaguicidas/análisis , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
9.
Regul Toxicol Pharmacol ; 104: 141-150, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30894305

RESUMEN

Gamma irradiation is regarded as a promising alternative method for sewage sludge (SS) treatment. To evaluate the human health risk and effects of gamma irradiated and non-irradiated SS (SSGI and SSNI, respectively) on micronutrient and heavy metal concentrations in basil (Ocimum basilicum L.) as a test plant, a greenhouse experiment based on completely randomized design was conducted with control (without SS and irradiation) and 15, 30 and 60 g kg-1 of SSNI as well as SSGI (irradiated with doses of 5, 10 and 20 kGy) with three replicates. The results indicated that the concentrations of copper, zinc, iron, nickel, lead, and cadmium in SSGI and SSNI treatments were greater than the limits set by FAO/WHO for vegetables or by European Commission for food. The target hazard quotient (THQ) of all metals except lead in the treatments with >15 g kg-1 SSGI or SSNI and the hazard index (HI) in the control treatment were lower than the threshold value of 1, but the HIs in SSNI and SSGI treatments were greater than the threshold value. Nevertheless, no significant differences existed between most THQs and HIs from dietary intake of basil grown in SSGI as compared with SSNI. It was concluded that the basil cultivated under tested levels of SSGI and SSNI is not permissible for human consumption.


Asunto(s)
Rayos gamma , Metales Pesados/análisis , Micronutrientes/análisis , Ocimum basilicum/química , Aguas del Alcantarillado/química , Suelo/química , Humanos , Medición de Riesgo
10.
Ecotoxicol Environ Saf ; 145: 377-390, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28759767

RESUMEN

Contamination of soils, water and air with toxic heavy metals by various human activities is a crucial environmental problem in both developing and developed countries. Heavy metals could be introduced into medicinal plant products through contaminated environment (soil, water and air resources) and/or poor production practices. Growing of medicinal plants in heavy metal polluted environments may eventually affect the biosynthesis of secondary metabolites, causing significant changes in the quantity and quality of these compounds. Certain medicinal and aromatic plants can absorb and accumulate metal contaminants in the harvestable foliage and, therefore, considered to be a feasible alternative for remediation of polluted sites without any contamination of essential oils. Plants use different strategies and complex arrays of enzymatic and non-enzymatic anti-oxidative defense systems to cope with overproduction of ROS causes from the heavy metals entered their cells through foliar and/or root systems. This review summarizes the reports of recent investigations involving heavy metal accumulation by medicinal plants and its effects on elicitation of secondary metabolites, toxicity and detoxification pathways, international standards regarding in plants and plant-based products, and human health risk assessment of heavy metals in soil-medicinal plants systems.


Asunto(s)
Metales Pesados/análisis , Estrés Oxidativo/efectos de los fármacos , Preparaciones de Plantas/normas , Plantas Medicinales/metabolismo , Metabolismo Secundario/efectos de los fármacos , Contaminantes del Suelo/análisis , Antioxidantes/análisis , Antioxidantes/normas , Humanos , Metales Pesados/toxicidad , Preparaciones de Plantas/análisis , Plantas Comestibles/química , Plantas Comestibles/metabolismo , Plantas Medicinales/química , Contaminantes del Suelo/toxicidad
11.
Chemosphere ; 355: 141749, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521099

RESUMEN

Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.


Asunto(s)
Plásticos Biodegradables , Plásticos , Plásticos/química , Ecosistema , Biopolímeros , Biodegradación Ambiental , Bioingeniería
12.
Plants (Basel) ; 13(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124236

RESUMEN

Quinoa (Chenopodium quinoa Willd.) has gained worldwide recognition for its nutritional values, adaptability to diverse environments, and genetic diversity. This review explores the current understanding of quinoa tolerance to environmental stress, focusing on drought, salinity, heat, heavy metals, and UV-B radiation. Although drought and salinity have been extensively studied, other stress factors remain underexplored. The ever-increasing incidence of abiotic stress, exacerbated by unpredictable weather patterns and climate change, underscores the importance of understanding quinoa's responses to these challenges. Global gene banks safeguard quinoa's genetic diversity, supporting breeding efforts to develop stress-tolerant varieties. Recent advances in genomics and molecular tools offer promising opportunities to improve stress tolerance and increase the yield potential of quinoa. Transcriptomic studies have shed light on the responses of quinoa to drought and salinity, yet further studies are needed to elucidate its resilience to other abiotic stresses. Quinoa's ability to thrive on poor soils and limited water resources makes it a sustainable option for land restoration and food security enterprises. In conclusion, quinoa is a versatile and robust crop with the potential to address food security challenges under environmental constraints.

13.
Sci Rep ; 13(1): 18500, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898667

RESUMEN

Studying total soil carbon (STC), which encompasses organic (SOC) and inorganic carbon (SIC), as well as investigating the influence of soil carbon on other soil properties, is crucial for effective global soil carbon management. This knowledge is invaluable for evaluating carbon sequestration, although its scope is currently limited. Boosting soil carbon sequestration, particularly in arid regions, has direct and indirect implications for achieving over four Sustainable Development Goals: mitigating hunger, extreme poverty, enhancing environmental preservation, and addressing global climate concerns. Research into changes within SOC and SIC across surface and subsurface soils was conducted on aeolian deposits. In this specific case study, two sites sharing similar climates and conditions were chosen as sources of wind-blown sediment parent material. The aim was to discern variations in SOC, SIC, and STC storage in surface and subsurface soils between Sistan and Baluchistan Province (with rapeseed and date orchard cultivation) and Kerman Province (with maize cultivation) in southeastern Iran. The findings highlighted an opposing pattern in SOC and storage concerning soil depth, unlike SIC. The average SOC content was higher in maize cultivation (0.2%) compared to date orchard and rapeseed cultivation (0.11%), attributed to the greater evolution of these arid soils (aridisols) in comparison to the other region (entisols). Conversely, SIC content in the three soil uses demonstrated minimal variation. The mean STC storage was greater in maize cultivation (60.35 Mg ha-1) than in date orchard (54.67 Mg ha-1) and rapeseed cultivation (53.42 Mg ha-1). Within the examined drylands, SIC, originating from aeolian deposits and soil processes, assumes a more prominent role in total carbon storage than SOC, particularly within subsurface soils. Notably, over 90% of total carbon storage exists in the form of inorganic carbon in soils.

14.
Sci Rep ; 13(1): 5113, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991072

RESUMEN

In most agricultural fields, when soil pH is high, elemental sulfur or sulfuric acid are used to reduce soil pH and increase the availability of macro and micronutrients for optimum crop yield. However, how these inputs impact soil greenhouse gas emissions is unknown. This study aimed to measure the amount of greenhouse gas emissions and pH after the application of various doses of elemental sulfur (ES) and sulfuric acid (SA). Using static chambers, this study quantifies soil greenhouse gas emissions (CO2, N2O, and CH4) for 12 months after the application of ES (200, 400, 600, 800, and 1000 kg ha-1) and SA (20, 40, 60, 80 and 100 kg ha-1) to a calcareous soil (pH 8.1) in Zanjan, Iran. Also, in order to simulate rainfed and dryland farming which are common practices in this area, this study was conducted with and without sprinkler irrigation. Application of ES slowly decreased soil pH (more than half a unit) over the year whereas application of SA temporarily reduced the pH (less than a half unit) for a few weeks. CO2 and N2O emissions and CH4 uptake were maximum during summer and lowest in winter. Cumulative CO2 fluxes ranged from 1859.2 kg-1 CO2-C ha-1 year-1 in the control treatment to 2269.6 kg CO2-C ha-1 year-1 in the 1000 kg ha-1 ES treatment. Cumulative fluxes for N2O-N were 2.5 and 3.7 kg N2O-N ha-1 year-1 and cumulative CH4 uptakes were 0.2 and 2.3 kg CH4-C ha-1 year-1 in the same treatments. Irrigation significantly increased CO2 and N2O emissions and, depending on the amount of ES applied, decreased or increased CH4 uptake. SA application had a negligible effect on GHGs emissions in this experiment and only the highest amount of SA altered GHGs emissions.

15.
Sci Rep ; 13(1): 21989, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081886

RESUMEN

Water consumption management and the application of advanced techniques in the agricultural sector can significantly contribute to the efficient utilization of limited water resources. This can be achieved by improving soil texture, increasing water retention, reducing erosion, and enhancing seedling germination through the use of superabsorbent polymers. This study aimed to investigate the effect of Aquasource superabsorbent (AS) on the morphological characteristics, phytochemical properties, antioxidant content, and water use efficiency of peppermint. It was conducted under different irrigation management and using different superabsorbent levels. Therefore, a 3 × 4 factorial design was used to determine the effects of irrigation intervals (2-, 4-, and 6-day) and different levels of AS amount (zero [control], 0.5, 1, and 2 wt%). The effects of these factors on various parameters (morphological characteristics, essential oil percentage, nutrient, protein, proline, carotenoid, antioxidant, and chlorophyll content, leaf area index, relative water content, and water use efficiency [WUE]) were evaluated. The results showed that morphological characteristics and essential oil percentage decreased significantly under drought stress (increasing the irrigation intervals). However, the addition of 0.5 (wt%) AS improved plant growth conditions. Increasing the amount of superabsorbent used to 1 and 2 (wt%) decreased the measured traits, which indicates the creation of unsuitable conditions for plant growth. AS application improved the growth of the root more than the leaf yield of peppermint. A 0.5 (wt%) addition of AS resulted in root length increases of 3, 13, and 15%, respectively, at irrigation intervals of 2, 4, and 6 days, respectively. Additionally, at 0.5 (wt%) AS, root weight increased by 8, 15, and 16% in 2-, 4-, and 6-day irrigation intervals, respectively. Also, the height of the plant increased by 3, 5, and 17% at 2-, 4-, and 6-day irrigation intervals when 0.5 (wt%) of AS was used compared to the control. As well, essential oil percentage increased by 2.14, 2.06, and 1.63% at 2-, 4-, and 6-day irrigation intervals. The nutrient and protein contents decreased as irrigation intervals and AS usage increased, indicating a similar trend. However, compared with the control, the addition of 0.5 (wt%) of AS resulted in some improvements in nutrients and protein. The highest WUE (3.075 kg m-3) was attained in the 4-day irrigation interval and 1 wt% AS addition. This was followed closely by the 2-day irrigation interval with 1 wt% AS addition at 3.025 kg m-3, and the 4-day irrigation interval with 0.5 wt% AS addition, which reached 2.941 kg m-3. Overall, the use of AS in appropriate amounts (0.5 wt%) can reduce water consumption and enhance essential oil yield and WUE in peppermint cultivation in water-scarce arid and semi-arid regions.


Asunto(s)
Mentha piperita , Aceites Volátiles , Antioxidantes/metabolismo , Agua/metabolismo , Polímeros/farmacología , Sequías , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Riego Agrícola/métodos
16.
Sci Rep ; 13(1): 8896, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264097

RESUMEN

Salinity and drought are two major abiotic stresses challenging global crop production and food security. In this study, the effects of individual and combined effects of drought (at different phenological stages) and salt stresses on growth, morphology, and physiology of triticale were evaluated. For this purpose, a 3 x 4 factorial design in three blocks experiment was conducted. The stress treatments included three levels of salinity (0, 50, and 100 mM NaCl) and four levels of drought (regular irrigation as well as irrigation disruption at heading, flowering, and kernel extension stages). The stresses, individual as well as combined, caused a significant decrease in chlorophyll contents, total dry matter, leaf area index, relative water content, and grain yield of triticale. In this regard, the highest reduction was recorded under combined stresses of 100 mM NaCl and drought stress at flowering. However, an increase in soluble sugars, leaf free proline, carotenoid contents, and electrolyte leakage was noted under stress conditions compared to the control. In this regard, the highest increase in leaf free proline, soluble sugars, and carotenoid contents were noted under the combination of severe salinity and drought stress imposed at the flowering stage. Investigating the growth indices in severe salinity and water deficit stress in different phenological stages shows the predominance of ionic stress over osmotic stress under severe salinity. The highest grain yield was observed under non-saline well-watered conditions whereas the lowest grain yield was recorded under severe salinity and drought stress imposed at the flowering stage. In conclusion, the flowering stage was more sensitive than the heading and kernel extension stages in terms of water deficit. The impact of salinity and water deficit was more pronounced on soluble sugars and leaf free proline; so, these criteria can be used as physiological indicators for drought and salinity tolerance in triticale.


Asunto(s)
Cloruro de Sodio , Triticale , Cloruro de Sodio/farmacología , Sequías , Estrés Salino , Carotenoides , Deshidratación , Agua , Prolina , Azúcares
17.
Environ Sci Pollut Res Int ; 30(55): 116538-116566, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35680750

RESUMEN

Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.


Asunto(s)
Ecosistema , Suelo , Humanos , Agua , Plantas , Biodegradación Ambiental
18.
Sci Rep ; 12(1): 20033, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414656

RESUMEN

Vermicompost (VC) is a rich source of HA that improves plant growth and yield indices such as fresh and dry weights, plant height, stem diameter, leaf area, and chlorophyll index value. In this study, the effect of foliar application of HA extracted from different types of VC enriched with bacteria and/or fertilizers, commercial HA (CHA) and indole acetic acid (IAA) on the growth characteristics of canola (Brassica napus) in greenhouse conditions were compared. According to the results, the foliar application of HA extracted from VC had complete superiority over CHA and IAA in most traits except for the leaf number. Furthermore, the highest level of foliar application of HA (600 mg L-1) enriched with Azotobacter chroococcum (21Az) + Pseudomonas fluorescens (Ps 59) (HA-AS) generated the highest height, diameter, leaf area, and chlorophyll index value. Also, the highest stomatal conductance and photosynthesis rate were observed with the application of 600 mg L-1 HA extracted from VC enriched with nitrogen, sulfur, and phosphorus (HA-NSP) compared to the other treatments. Besides, dry and fresh weights and seed yield under HA-NSP and HA-AS treatments were at their highest rate. Among the extracted HAs, the one extracted from the nitrogen enriched VC had the lowest efficiency. Based on the present study, the HA extracted from VC enriched with Azotobacter, Pseudomonas and NSP is recommended to increase canola growth and production.


Asunto(s)
Brassica napus , Sustancias Húmicas , Nitrógeno/farmacología , Clorofila/farmacología
19.
Folia Microbiol (Praha) ; 67(5): 671-681, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35508797

RESUMEN

Lignocellulosic materials are composed of three main structural polymers: hemicellulose, cellulose, and lignin. Cellulose is a long chain molecule of glucose requiring a small number of enzymes for degradation due to its simple structure while lignin is a complex polymer of phenylpropane making its biochemical decomposition difficult. Under anaerobic conditions, lignocellulose breakdown is much easier and more rapid than aerobic conditions. Various studies have been carried out to estimate the rate of degradation of lignocellulosic materials. Microorganisms play a key role in the degradation of lignocellulosic materials because they produce a variety of hydrolytic enzymes including cellulase, proteases, xylanases, lipases, laccase, and phosphatases during the degradation of lignocellulosic materials. Based on the body of literature, microorganismal activity can provide useful information about the process of organic matter decomposition.


Asunto(s)
Celulasa , Lignina , Pared Celular/metabolismo , Celulosa/metabolismo , Glucosa , Lacasa , Lignina/metabolismo , Péptido Hidrolasas , Monoéster Fosfórico Hidrolasas , Polímeros
20.
Plants (Basel) ; 11(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35050115

RESUMEN

Humic acid (HA) is a specific and stable component of humus materials that behaves similarly to growth stimulants, esp. auxin hormones, contributing to improving growth indices and performance of plants. As a rich source of HA, vermicompost (VC) is also a plant growth stimulating bio-fertilizer that can enhance growth indices and performance in plants. The purpose of the present study is to compare the influence of VC enriched with bacterial and/or fertilizer, commercial humic acid (CHA) extract, and indole-3-acetic acid (IAA) on improving growth characteristics and performance of rapeseed under greenhouse conditions. The results showed the complete superiority of VC over the CHA and IAA (approximately 8% increase in the dry weights of root and aerial organ and nearly three times increase in seed weight). The highest values of these indices were obtained with VC enriched with Nitrogen, Sulfur, and Phosphorus, Azotobacter chroococcum and Pseudomonas fluorescens; the lowest value was obtained with VC enriched with urea. Additionally, the application of 3% VC and the control involved the highest and lowest values in all traits, respectively. The SPAD (chlorophyll index) value and stem diameter were not significantly affected by different application levels of VC. Overall, the applications of IAA and the CHA were not found to be suitable and therefore not recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA