Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495341

RESUMEN

Over one third of the estimated 3 million people with epilepsy in the United States are medication resistant. Responsive neurostimulation from chronically implanted electrodes provides a promising treatment alternative to resective surgery. However, determining optimal personalized stimulation parameters, including when and where to intervene to guarantee a positive patient outcome, is a major open challenge. Network neuroscience and control theory offer useful tools that may guide improvements in parameter selection for control of anomalous neural activity. Here we use a method to characterize dynamic controllability across consecutive effective connectivity (EC) networks based on regularized partial correlations between implanted electrodes during the onset, propagation, and termination regimes of 34 seizures. We estimate regularized partial correlation adjacency matrices from 1-s time windows of intracranial electrocorticography recordings using the Graphical Least Absolute Shrinkage and Selection Operator (GLASSO). Average and modal controllability metrics calculated from each resulting EC network track the time-varying controllability of the brain on an evolving landscape of conditionally dependent network interactions. We show that average controllability increases throughout a seizure and is negatively correlated with modal controllability throughout. Our results support the hypothesis that the energy required to drive the brain to a seizure-free state from an ictal state is smallest during seizure onset, yet we find that applying control energy at electrodes in the seizure onset zone may not always be energetically favorable. Our work suggests that a low-complexity model of time-evolving controllability may offer insights for developing and improving control strategies targeting seizure suppression.


Asunto(s)
Progresión de la Enfermedad , Red Nerviosa/patología , Convulsiones/patología , Epilepsia/patología , Humanos , Factores de Tiempo
2.
Brain ; 142(7): 1955-1972, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31099821

RESUMEN

How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.


Asunto(s)
Encéfalo/fisiopatología , Conectoma , Epilepsias Parciales/fisiopatología , Vías Nerviosas/fisiopatología , Convulsiones/fisiopatología , Adulto , Imagen de Difusión por Resonancia Magnética , Resistencia a Medicamentos , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Sustancia Blanca/fisiopatología , Adulto Joven
3.
Proc IEEE Inst Electr Electron Eng ; 106(5): 846-867, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30559531

RESUMEN

The human brain can be represented as a graph in which neural units such as cells or small volumes of tissue are heterogeneously connected to one another through structural or functional links. Brain graphs are parsimonious representations of neural systems that have begun to offer fundamental insights into healthy human cognition, as well as its alteration in disease. A critical open question in network neuroscience lies in how neural units cluster into densely interconnected groups that can provide the coordinated activity that is characteristic of perception, action, and adaptive behaviors. Tools that have proven particularly useful for addressing this question are community detection approaches, which can identify communities or modules: groups of neural units that are densely interconnected with other units in their own group but sparsely interconnected with units in other groups. In this paper, we describe a common community detection algorithm known as modularity maximization, and we detail its applications to brain graphs constructed from neuroimaging data. We pay particular attention to important algorithmic considerations, especially in recent extensions of these techniques to graphs that evolve in time. After recounting a few fundamental insights that these techniques have provided into brain function, we highlight potential avenues of methodological advancements for future studies seeking to better characterize the patterns of coordinated activity in the brain that accompany human behavior. This tutorial provides a naive reader with an introduction to theoretical considerations pertinent to the generation of brain graphs, an understanding of modularity maximization for community detection, a resource of statistical measures that can be used to characterize community structure, and an appreciation of the usefulness of these approaches in uncovering behaviorally-relevant network dynamics in neuroimaging data.

4.
Neuroimage ; 157: 364-380, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28602945

RESUMEN

Human brain dynamics can be viewed through the lens of statistical mechanics, where neurophysiological activity evolves around and between local attractors representing mental states. Many physically-inspired models of these dynamics define brain states based on instantaneous measurements of regional activity. Yet, recent work in network neuroscience has provided evidence that the brain might also be well-characterized by time-varying states composed of locally coherent activity or functional modules. We study this network-based notion of brain state to understand how functional modules dynamically interact with one another to perform cognitive functions. We estimate the functional relationships between regions of interest (ROIs) by fitting a pair-wise maximum entropy model to each ROI's pattern of allegiance to functional modules. This process uses an information theoretic notion of energy (as opposed to a metabolic one) to produce an energy landscape in which local minima represent attractor states characterized by specific patterns of modular structure. The clustering of local minima highlights three classes of ROIs with similar patterns of allegiance to community states. Visual, attention, sensorimotor, and subcortical ROIs are well-characterized by a single functional community. The remaining ROIs affiliate with a putative executive control community or a putative default mode and salience community. We simulate the brain's dynamic transitions between these community states using a random walk process. We observe that simulated transition probabilities between basins are statistically consistent with empirically observed transitions in resting state fMRI data. These results offer a view of the brain as a dynamical system that transitions between basins of attraction characterized by coherent activity in groups of brain regions, and that the strength of these attractors depends on the ongoing cognitive computations.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/métodos , Red Nerviosa/fisiología , Entropía , Humanos , Imagen por Resonancia Magnética , Modelos Neurológicos , Red Nerviosa/diagnóstico por imagen
5.
Hum Brain Mapp ; 38(9): 4744-4759, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28646563

RESUMEN

Human behavior is supported by flexible neurophysiological processes that enable the fine-scale manipulation of information across distributed neural circuits. Yet, approaches for understanding the dynamics of these circuit interactions have been limited. One promising avenue for quantifying and describing these dynamics lies in multilayer network models. Here, networks are composed of nodes (which represent brain regions) and time-dependent edges (which represent statistical similarities in activity time series). We use this approach to examine functional connectivity measured by non-invasive neuroimaging techniques. These multilayer network models facilitate the examination of changes in the pattern of statistical interactions between large-scale brain regions that might facilitate behavior. In this study, we define and exercise two novel measures of network reconfiguration, and demonstrate their utility in neuroimaging data acquired as healthy adult human subjects learn a new motor skill. In particular, we identify putative functional modules in multilayer networks and characterize the degree to which nodes switch between modules. Next, we define cohesive switches, in which a set of nodes moves between modules together as a group, and we define disjoint switches, in which a single node moves between modules independently from other nodes. Together, these two concepts offer complementary yet distinct insights into the changes in functional connectivity that accompany motor learning. More generally, our work offers statistical tools that other researchers can use to better understand the reconfiguration patterns of functional connectivity over time. Hum Brain Mapp 38:4744-4759, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas
6.
medRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39108531

RESUMEN

Background: Traditional clinical assessments often lack individualization, relying on standardized procedures that may not accommodate the diverse needs of patients, especially in early stages where personalized diagnosis could offer significant benefits. We aim to provide a machine-learning framework that addresses the individualized feature addition problem and enhances diagnostic accuracy for clinical assessments. Methods: Individualized Clinical Assessment Recommendation System (iCARE) employs locally weighted logistic regression and Shapley Additive Explanations (SHAP) value analysis to tailor feature selection to individual patient characteristics. Evaluations were conducted on synthetic and real-world datasets, including early-stage diabetes risk prediction and heart failure clinical records from the UCI Machine Learning Repository. We compared the performance of iCARE with a Global approach using statistical analysis on accuracy and area under the ROC curve (AUC) to select the best additional features. Findings: The iCARE framework enhances predictive accuracy and AUC metrics when additional features exhibit distinct predictive capabilities, as evidenced by synthetic datasets 1-3 and the early diabetes dataset. Specifically, in synthetic dataset 1, iCARE achieved an accuracy of 0·999 and an AUC of 1·000, outperforming the Global approach with an accuracy of 0·689 and an AUC of 0·639. In the early diabetes dataset, iCARE shows improvements of 1·5-3·5% in accuracy and AUC across different numbers of initial features. Conversely, in synthetic datasets 4-5 and the heart failure dataset, where features lack discernible predictive distinctions, iCARE shows no significant advantage over global approaches on accuracy and AUC metrics. Interpretation: iCARE provides personalized feature recommendations that enhance diagnostic accuracy in scenarios where individualized approaches are critical, improving the precision and effectiveness of medical diagnoses. Funding: This work was supported by startup funding from the Department of Psychology at the University of Kansas provided to A.A., and the R01MH125740 award from NIH partially supported J.M.G.'s work.

7.
medRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461688

RESUMEN

Background: Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies. Objective/Hypothesis: We hypothesize that seizure-correlated cycles are present in background neural activity, independent of interictal epileptiform spikes, and that neurostimulation may disrupt these cycles. Methods: We analyzed regularly-recorded seizure-free data epochs from 20 patients implanted with a responsive neurostimulation (RNS) device for at least 1.5 years, to explore the relationship between cycles in device-detected interictal epileptiform activity (dIEA), clinician-validated interictal spikes, background EEG features, and neurostimulation. Results: Background EEG features tracked the cycle phase of dIEA in all patients (AUC: 0.63 [0.56 - 0.67]) with a greater effect size compared to clinically annotated spike rate alone (AUC: 0.55 [0.53-0.61], p < 0.01). After accounting for circadian variation and spike rate, we observed significant population trends in elevated theta and beta band power and theta and alpha connectivity features at the cycle peaks (sign test, p < 0.05). In the period directly after stimulation we observe a decreased association between cycle phase and EEG features compared to background recordings (AUC: 0.58 [0.55-0.64]). Conclusions: Our findings suggest that seizure-correlated dIEA cycles are not solely due to epileptiform discharges but are associated with background measures of brain state; and that neurostimulation may disrupt these cycles. These results may help elucidate mechanisms underlying seizure generation, provide new biomarkers for seizure risk, and facilitate monitoring, treating, and managing epilepsy with implantable devices.

8.
Brain Stimul ; 16(6): 1709-1718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37979654

RESUMEN

BACKGROUND: Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies. OBJECTIVE/HYPOTHESIS: We hypothesize that seizure-correlated cycles are present in background neural activity, independent of interictal epileptiform spikes, and that neurostimulation may temporarily interrupt these cycles. METHODS: We analyzed regularly-recorded seizure-free data epochs from 20 patients implanted with a responsive neurostimulation (RNS) device for at least 1.5 years, to explore the relationship between cycles in device-detected interictal epileptiform activity (dIEA), clinician-validated interictal spikes, background EEG features, and neurostimulation. RESULTS: Background EEG features tracked the cycle phase of dIEA in all patients (AUC: 0.63 [0.56-0.67]) with a greater effect size compared to clinically annotated spike rate alone (AUC: 0.55 [0.53-0.61], p < 0.01). After accounting for circadian variation and spike rate, we observed significant population trends in elevated theta and beta band power and theta and alpha connectivity features at the cycle peaks (sign test, p < 0.05). In the period directly after stimulation we observe a decreased association between cycle phase and EEG features compared to background recordings (AUC: 0.58 [0.55-0.64]). CONCLUSIONS: Our findings suggest that seizure-correlated dIEA cycles are not solely due to epileptiform discharges but are associated with background measures of brain state; and that neurostimulation may temporarily interrupt these cycles. These results may help elucidate mechanisms underlying seizure generation, provide new biomarkers for seizure risk, and facilitate monitoring, treating, and managing epilepsy with implantable devices.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/terapia , Convulsiones/terapia , Encéfalo
9.
Neuron ; 111(8): 1316-1330.e5, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36803653

RESUMEN

Hierarchical processing requires activity propagating between higher- and lower-order cortical areas. However, functional neuroimaging studies have chiefly quantified fluctuations within regions over time rather than propagations occurring over space. Here, we leverage advances in neuroimaging and computer vision to track cortical activity propagations in a large sample of youth (n = 388). We delineate cortical propagations that systematically ascend and descend a cortical hierarchy in all individuals in our developmental cohort, as well as in an independent dataset of densely sampled adults. Further, we demonstrate that top-down, descending hierarchical propagations become more prevalent with greater demands for cognitive control as well as with development in youth. These findings emphasize that hierarchical processing is reflected in the directionality of propagating cortical activity and suggest top-down propagations as a potential mechanism of neurocognitive maturation in youth.


Asunto(s)
Desarrollo del Adolescente , Corteza Cerebral , Desarrollo Infantil , Neuroimagen Funcional , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Cognición/fisiología , Estudios de Cohortes , Conjuntos de Datos como Asunto , Neuroimagen Funcional/métodos , Flujo Optico
10.
PLoS One ; 17(7): e0268752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895686

RESUMEN

Resting-state blood-oxygen-level-dependent (BOLD) signal acquired through functional magnetic resonance imaging is a proxy of neural activity and a key mechanism for assessing neurological conditions. Therefore, practical tools to filter out artefacts that can compromise the assessment are required. On the one hand, a variety of tailored methods to preprocess the data to deal with identified sources of noise (e.g., head motion, heart beating, and breathing, just to mention a few) are in place. But, on the other hand, there might be unknown sources of unstructured noise present in the data. Therefore, to mitigate the effects of such unstructured noises, we propose a model-based filter that explores the statistical properties of the underlying signal (i.e., long-term memory). Specifically, we consider autoregressive fractional integrative process filters. Remarkably, we provide evidence that such processes can model the signals at different regions of interest to attain stationarity. Furthermore, we use a principled analysis where a ground-truth signal with statistical properties similar to the BOLD signal under the injection of noise is retrieved using the proposed filters. Next, we considered preprocessed (i.e., the identified sources of noise removed) resting-state BOLD data of 98 subjects from the Human Connectome Project. Our results demonstrate that the proposed filters decrease the power in the higher frequencies. However, unlike the low-pass filters, the proposed filters do not remove all high-frequency information, instead they preserve process-related higher frequency information. Additionally, we considered four different metrics (power spectrum, functional connectivity using the Pearson's correlation, coherence, and eigenbrains) to infer the impact of such filter. We provided evidence that whereas the first three keep most of the features of interest from a neuroscience perspective unchanged, the latter exhibits some variations that could be due to the sporadic activity filtered out.


Asunto(s)
Conectoma , Artefactos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Memoria a Largo Plazo , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA