Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 16(6): 1223-30, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25619607

RESUMEN

We present the synthesis of novel conjugated polymer-porphyrin complexes for use in organic electronics. Linear and star-shaped platinated porphyrins were attached to regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) arms to investigate whether porphyrin stacking and increased dimensionality can be used to control polymer morphology. The novel materials display similar optical properties to P3HT, but give higher mobilities when used in organic field-effect transistors. Atomic force microscopy measurements show that incorporation of only a small amount of porphyrin into the conjugated polymer backbone leads to increased aggregation. These materials demonstrate that polymer morphology and performance can be tuned and enhanced effectively through the use of conjugatively linked porphyrins.

2.
J Am Chem Soc ; 133(38): 15073-84, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21815633

RESUMEN

We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packing and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.


Asunto(s)
Polímeros/química , Pirroles/química , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Semiconductores , Estereoisomerismo , Propiedades de Superficie , Tiofenos/química
3.
ACS Appl Mater Interfaces ; 13(3): 4253-4266, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33439636

RESUMEN

n-Type (electron transporting) polymers can make suitable interfaces to transduce biological events that involve the generation of electrons. However, n-type polymers that are stable when electrochemically doped in aqueous media are relatively scarce, and the performance of the existing ones lags behind their p-type (hole conducting) counterparts. Here, we report a new family of donor-acceptor-type polymers based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bi-thiophene (NDI-T2) backbone where the NDI unit always bears an ethylene glycol (EG) side chain. We study how small variations in the side chains tethered to the acceptor as well as the donor unit affect the performance of the polymer films in the state-of-the-art bioelectronic device, the organic electrochemical transistor (OECT). First, we find that substitution of the T2 core with an electron-withdrawing group (i.e., methoxy) or an EG side chain leads to ambipolar charge transport properties and causes significant changes in film microstructure, which overall impairs the n-type OECT performance. We thus show that the best n-type OECT performer is the polymer that has no substitution on the T2 unit. Next, we evaluate the distance of the oxygen from the NDI unit as a design parameter by varying the length of the carbon spacer placed between the EG unit and the backbone. We find that the distance of the EG from the backbone affects the film order and crystallinity, and thus, the electron mobility. Consequently, our work reports the best-performing NDI-T2-based n-type OECT material to date, i.e., the polymer without the T2 substitution and bearing a six-carbon spacer between the EG and the NDI units. Our work provides new guidelines for the side-chain engineering of n-type polymers for OECTs and insights on the structure-performance relationships for mixed ionic-electronic conductors, crucial for devices where the film operates at the aqueous electrolyte interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA