Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7996): 728-734, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200314

RESUMEN

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Asunto(s)
Bosques , Árboles , Clima Tropical , Biodiversidad , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , África , Asia Sudoriental
2.
Nature ; 584(7822): 579-583, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760001

RESUMEN

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Asunto(s)
Biodiversidad , Clasificación/métodos , Islas , Plantas/clasificación , Mapeo Geográfico , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Internet , Nueva Guinea , Especificidad de la Especie , Factores de Tiempo
3.
Nature ; 522(7554): 81-4, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25799987

RESUMEN

No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as 'South American native ungulates'. To Charles Darwin, who first collected their remains, they included perhaps the 'strangest animal[s] ever discovered'. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen α1- and α2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny is estimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from 'condylarths', a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.


Asunto(s)
Colágeno Tipo I/química , Fósiles , Mamíferos/clasificación , Filogenia , Secuencia de Aminoácidos , Animales , Huesos/química , Bovinos , Colágeno Tipo I/genética , Femenino , Perisodáctilos/clasificación , Placenta , Embarazo , Proteómica , América del Sur
4.
Ann Bot ; 123(5): 857-865, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30541053

RESUMEN

BACKGROUND AND AIMS: Phylogenetic relationships within tribe Shoreeae, containing the main elements of tropical forests in Southeast Asia, present a long-standing problem in the systematics of Dipterocarpaceae. Sequencing whole plastomes using next-generation sequencing- (NGS) based genome skimming is increasingly employed for investigating phylogenetic relationships of plants. Here, the usefulness of complete plastid genome sequences in resolving phylogenetic relationships within Shoreeae is evaluated. METHODS: A pipeline to obtain alignments of whole plastid genome sequences across individuals with different amounts of available data is presented. In total, 48 individuals, representing 37 species and four genera of the ecologically and economically important tribe Shoreeae sensu Ashton, were investigated. Phylogenetic trees were reconstructed using maximum parsimony, maximum likelihood and Bayesian inference. KEY RESULTS: Here, the first fully sequenced plastid genomes for the tribe Shoreeae are presented. Their size, GC content and gene order are comparable with those of other members of Malvales. Phylogenomic analyses demonstrate that whole plastid genomes are useful for inferring phylogenetic relationships among genera and groups of Shorea (Shoreeae) but fail to provide well-supported phylogenetic relationships among some of the most closely related species. Discordance in placement of Parashorea was observed between phylogenetic trees obtained from plastome analyses and those obtained from nuclear single nucleotide polymorphism (SNP) data sets identified in restriction-site associated sequencing (RADseq). CONCLUSIONS: Phylogenomic analyses of the entire plastid genomes are useful for inferring phylogenetic relationships at lower taxonomic levels, but are not sufficient for detailed phylogenetic reconstructions of closely related species groups in Shoreeae. Discordance in placement of Parashorea was further investigated for evidence of ancient hybridization.


Asunto(s)
Dipterocarpaceae , Genoma de Plastidios , Composición de Base , Teorema de Bayes , Filogenia
5.
Clin Infect Dis ; 66(11): 1698-1704, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29253089

RESUMEN

Background: The annual standard-dose (SD) influenza vaccine has suboptimal immunogenicity in solid organ transplant recipients (SOTRs). Influenza vaccine that contains higher doses of antigens may lead to greater immunogenicity in this population. Methods: We conducted a randomized, double-blind trial to compare the safety and immunogenicity of the 2016-2017 high-dose (HD; FluzoneHD, Sanofi) vs SD (Fluviral, GSK) influenza vaccine in adult SOTRs. Preimmunization and 4-week postimmunization sera underwent strain-specific hemagglutination inhibition assay. Results: We enrolled 172 patients who received study vaccine, and 161 (84 HD; 77 SD) were eligible for analysis. Seroconversion to at least 1 of 3 vaccine antigens was present in 78.6% vs 55.8% in HD vs SD vaccine groups (P < .001), respectively. Seroconversions to A/ H1N1, A/H3N2, and B strains were 40.5% vs 20.5%, 57.1% vs 32.5%, and 58.3% vs 41.6% in HD vs SD vaccine groups (P = .006, P = .002, P = .028, respectively). Post-immunization geometric mean titers of A/H1N1, A/H3N2, and B strains were significantly higher in the HD group (P = .007, P = .002, P = .033). Independent factors associated with seroconversion to at least 1 vaccine strain were the use of HD vaccine (odds ratio [OR], 3.23; 95% confidence interval [CI], 1.56-6.67) and use of mycophenolate doses <2 g daily (OR, 2.76; 95% CI, 1.12-6.76). Conclusions: HD vaccine demonstrated significantly better immunogenicity than SD vaccine in adult transplant recipients and may be the preferred influenza vaccine for this population. Clinical Trials Registration: NCT03139565.


Asunto(s)
Relación Dosis-Respuesta Inmunológica , Vacunas contra la Influenza/inmunología , Receptores de Trasplantes , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , Antígenos Virales , Método Doble Ciego , Femenino , Humanos , Vacunas contra la Influenza/administración & dosificación , Masculino , Persona de Mediana Edad , Trasplante de Órganos , Seroconversión , Adulto Joven
6.
Mol Phylogenet Evol ; 127: 1-13, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29778722

RESUMEN

A supra-annual, community-level synchronous flowering prevails in several parts of the tropical forests of Southeast Asia and its evolution has been hypothesized to be linked to pollinator shifts. The aseasonal Southeast Asian lowland rainforests are dominated by Dipterocarpaceae, which exhibit great floral diversity, a range of pollination syndromes and include species with annual and supra-annual gregarious flowering. Phylogenetic relationships within this family are still unclear, especially in the tribe Shoreeae. Here, we develop a pipeline to maximize recovery of genome-wide SNPs from restriction-site associated DNA sequencing (RADseq) in non-model organisms across wide phylogenetic scales. We then infer phylogenomic relationships in the tribe Shoreeae using both traditional and coalescent analyses. The phylogenetic trees obtained with these methods are congruent to each other and highly resolved. They allow reconstructing the evolutionary patterns of floral traits (number of stamens, anther structure and anther/appendage size) in the group. Our inferences indicate that species with many stamens, but smaller, globose anthers and longer appendages and have evolved multiple times from species with fewer stamens, but larger, oblong anthers and shorter appendages. This could have happened in parallel to iterative shifts in pollinators across the uncovered phylogeny from larger, longer generation to smaller, shorter-generation insects that can quickly build up the necessary population sizes during mass flowering episodes.


Asunto(s)
Dipterocarpaceae/clasificación , Dipterocarpaceae/genética , Flores/fisiología , Genómica , Filogenia , Animales , Funciones de Verosimilitud , Polimorfismo de Nucleótido Simple
7.
Nature ; 489(7415): 290-4, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22832582

RESUMEN

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Especies en Peligro de Extinción/estadística & datos numéricos , Árboles/fisiología , Clima Tropical , Agricultura/estadística & datos numéricos , Animales , Recolección de Datos , Ecología/estadística & datos numéricos , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/estadística & datos numéricos , Incendios/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Entrevistas como Asunto , Minería/estadística & datos numéricos , Crecimiento Demográfico , Lluvia , Reproducibilidad de los Resultados , Investigadores , Encuestas y Cuestionarios , Temperatura
8.
Proc Natl Acad Sci U S A ; 112(24): 7472-7, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26034279

RESUMEN

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


Asunto(s)
Biodiversidad , Bosques , Árboles , Clima Tropical , Conservación de los Recursos Naturales , Bases de Datos Factuales , Ecosistema , Filogeografía , Bosque Lluvioso , Especificidad de la Especie , Estadísticas no Paramétricas , Árboles/clasificación
9.
Nucleic Acids Res ; 43(20): 9965-77, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26384416

RESUMEN

Satellite RNAs (satRNAs) are a class of small parasitic RNA replicon that associate with different viruses, including plus-strand RNA viruses. Because satRNAs do not encode a polymerase or capsid subunit, they rely on a companion virus to provide these proteins for their RNA replication and packaging. SatRNAs recruit these and other required factors via their RNA sequences and structures. Here, through a combination of chemical probing analysis of RNA structure, phylogenetic structural comparisons, and viability assays of satRNA mutants in infected cells, the biological importance of a deduced higher-order structure for a 619 nt long tombusvirus satRNA was assessed. Functionally-relevant secondary and tertiary RNA structures were identified throughout the length of the satRNA. Notably, a 3'-terminal segment was found to adopt two mutually-exclusive RNA secondary structures, both of which were required for efficient satRNA accumulation. Accordingly, these alternative conformations likely function as a type of RNA switch. The RNA switch was also found to engage in a required long-range kissing-loop interaction with an upstream sequence. Collectively, these results establish a high level of conformational complexity within this small parasitic RNA and provide a valuable structural framework for detailed mechanistic studies.


Asunto(s)
Modelos Moleculares , Satélite de ARN/química , ARN Viral/química , Mutación , Conformación de Ácido Nucleico , Tombusvirus/genética
10.
Glob Chang Biol ; 22(4): 1406-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26499288

RESUMEN

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.


Asunto(s)
Biomasa , Mapas como Asunto , Conjuntos de Datos como Asunto , Modelos Teóricos , Árboles , Clima Tropical
11.
Am Nat ; 185(3): 367-79, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25674691

RESUMEN

Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory.


Asunto(s)
Luz , Árboles/crecimiento & desarrollo , Clima Tropical , Teorema de Bayes , Demografía , Ecosistema , Bosques , Longevidad , Malasia
12.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19606141

RESUMEN

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Asunto(s)
Genoma de los Helmintos/genética , Schistosoma mansoni/genética , Animales , Evolución Biológica , Exones/genética , Genes de Helminto/genética , Interacciones Huésped-Parásitos/genética , Intrones/genética , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/embriología , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
13.
Genome Res ; 20(8): 1112-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20606017

RESUMEN

Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (< or =36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.


Asunto(s)
Empalme Alternativo/genética , Exones , Proteínas del Helminto/genética , Schistosoma mansoni/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Datos de Secuencia Molecular , Proteómica , Homología de Secuencia de Aminoácido , Transcripción Genética , Regulación hacia Arriba
14.
Nat Genet ; 35(2): 148-57, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12973350

RESUMEN

Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.


Asunto(s)
Schistosoma mansoni/genética , Transcripción Genética , Animales , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Genes de Helminto , Proteínas del Helminto/genética , Humanos , Datos de Secuencia Molecular , Schistosoma mansoni/patogenicidad , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/parasitología
15.
Proc Biol Sci ; 279(1744): 3923-31, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22833269

RESUMEN

The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.


Asunto(s)
Árboles/crecimiento & desarrollo , Clima Tropical , Malasia , Panamá , Luz Solar , Temperatura , Tailandia
16.
Science ; 375(6579): 455-460, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084986

RESUMEN

The evolution and diversification of ancient megathermal angiosperm lineages with Africa-India origins in Asian tropical forests is poorly understood because of the lack of reliable fossils. Our palaeobiogeographical analysis of pollen fossils from Africa and India combined with molecular data and fossil amber records suggest a tropical-African origin of Dipterocarpaceae during the mid-Cretaceous and its dispersal to India during the Late Maastrichtian and Paleocene, leading to range expansion of aseasonal dipterocarps on the Indian Plate. The India-Asia collision further facilitated the dispersal of dipterocarps from India to similar climatic zones in Southeast Asia, which supports their out-of-India migration. The dispersal pathway suggested for Dipterocarpaceae may provide a framework for an alternative biogeographic hypothesis for several megathermal angiosperm families that are presently widely distributed in Southeast Asia.


Asunto(s)
Fósiles , Malvales , Dispersión de las Plantas , Polen , África , Asia Sudoriental , Evolución Biológica , Clima , Ecosistema , Bosques , India , Islas , Malvales/anatomía & histología , Malvales/clasificación , Malvales/genética , Filogenia , Filogeografía , Polen/anatomía & histología , Bosque Lluvioso , Estaciones del Año
17.
New Phytol ; 190(3): 794-804, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21294738

RESUMEN

• Understanding the dynamics of rhizosphere microbial communities is essential for predicting future ecosystem function, yet most research focuses on either spatial or temporal processes, ignoring combined spatio-temporal effects. • Using pyrosequencing, we examined the spatio-temporal dynamics of a functionally important community of rhizosphere microbes, the arbuscular mycorrhizal (AM) fungi. We sampled AM fungi from plant roots growing in a temperate grassland in a spatially explicit manner throughout a year. • Ordination analysis of the AM fungal assemblages revealed significant temporal changes in composition and structure. Alpha and beta diversity tended to be negatively correlated with the climate variables temperature and sunshine hours. Higher alpha diversity during colder periods probably reflects more even competitive interactions among AM fungal species under limited carbon availability, a conclusion supported by analysis of beta diversity which highlights how resource limitation may change localized spatial dynamics. • Results reveal distinct AM fungal assemblages in winter and summer at this grassland site. A seasonally changing supply of host-plant carbon, reflecting changes in temperature and sunshine hours, may be the driving force in regulating the temporal dynamics of AM fungal communities. Climate change effects on seasonal temperatures may therefore substantially alter future AM fungal community dynamics and ecosystem functioning.


Asunto(s)
Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Micorrizas/genética , Estaciones del Año , Temperatura , Análisis de Componente Principal , Factores de Tiempo
18.
PLoS Biol ; 6(3): e45, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18318600

RESUMEN

In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.


Asunto(s)
Árboles/fisiología , Clima Tropical , Biodiversidad , Evolución Biológica , Biomasa , Ecosistema , Ambiente , Monitoreo del Ambiente , Agricultura Forestal , Malasia , Panamá , Puerto Rico , Sri Lanka , Tailandia , Factores de Tiempo , Árboles/crecimiento & desarrollo
19.
Plant Divers ; 43(6): 444-451, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024513

RESUMEN

In the southern mountain ranges of Yunnan province, China, deep valleys of several large rivers create rain shadows with hot dry summers, and are locally designated tropical; towards the north, notably in the Lancang (Upper Mekong) valley, these regions may experience frost during winter. The woody forest canopy of these valleys is predominantly deciduous, with evergreen elements in the north, where the canopy is open and the forest savanna-like. However, we here present tall forest with a closed deciduous canopy and semi-evergreen subcanopy observed in hot dry valleys of these rivers and their tributaries in the tropical south. The structure and physiognomy of these forests resemble the tall (moist) deciduous forest formation widespread in South Asia and Indo-Burma. Furthermore, these forests are largely composed of tropical elements at both the generic (80%) and the species level (>70%), indicating that these forests are indeed tropical. We originally hypothesized that these isolated forests represent refugia of a pre-Holocene extension of tall (moist) deciduous forest formation of South Asia and Indo-Burma. The sample plot we established to test this hypothesis confirmed that these forests share the structure and physiognomy of the tall (moist) deciduous forest formation; however, the plots also showed that these forests lack the characteristic and dominant species of the formation's Indo-Burmese range. The tree flora, in particular, indicates that both deciduous and evergreen elements are instead mostly derived from the adjacent tropical semi-evergreen forests of tropical southern China; yet they also include an important endemic element, which implies that these forests have survived as refuges possibly since the Pliocene. The exceptional representation of evergreen elements in these forests indicates that they have rarely been subject to hot fires or domestic cattle browsing, adding to the unique nature of the forests and further justifying their strict conservation.

20.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561222

RESUMEN

Angomonas deanei is an endosymbiont-bearing trypanosomatid with several highly fragmented genome assemblies and unknown chromosome number. We present an assembly of the A. deanei nuclear genome based on Oxford Nanopore sequence that resolves into 29 complete or close-to-complete chromosomes. The assembly has several previously unknown special features; it has a supernumerary chromosome, a chromosome with a 340-kb inversion, and there is a translocation between two chromosomes. We also present an updated annotation of the chromosomal genome with 10,365 protein-coding genes, 59 transfer RNAs, 26 ribosomal RNAs, and 62 noncoding RNAs.


Asunto(s)
Simbiosis , Trypanosomatina , Bacterias/genética , Cromosomas , Genoma , Trypanosomatina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA