RESUMEN
To mediate critical host-microbe interactions in the human small intestine, Paneth cells constitutively produce abundant levels of α-defensins and other antimicrobials. We report that the expression profile of these antimicrobials is dramatically askew in human small intestinal organoids (enteroids) as compared to that in paired tissue from which they are derived, with a reduction of α-defensins to nearly undetectable levels. Murine enteroids, however, recapitulate the expression profile of Paneth cell α-defensins seen in tissue. WNT/TCF signaling has been found to be instrumental in the regulation of α-defensins, yet in human enteroids exogenous stimulation of WNT signaling appears insufficient to rescue α-defensin expression. By stark contrast, forkhead box O (FOXO) inhibitor AS1842856 induced the expression of α-defensin mRNA in enteroids by >100,000-fold, restoring DEFA5 and DEFA6 to levels comparable to those found in primary human tissue. These results newly identify FOXO signaling as a pathway of biological and potentially therapeutic relevance for the regulation of human Paneth cell α-defensins in health and disease.
Asunto(s)
Antiinfecciosos , alfa-Defensinas , Humanos , Animales , Ratones , alfa-Defensinas/genética , alfa-Defensinas/farmacología , alfa-Defensinas/metabolismo , Intestinos , Intestino Delgado/metabolismo , Células de Paneth/metabolismo , Antiinfecciosos/metabolismo , Organoides/metabolismoRESUMEN
Associations between maternal immune dysregulation (including autoimmunity and skewed cytokine/chemokine profiles) and offspring neurodevelopmental disorders such as autism have been reported. In maternal autoantibody-related autism, specific maternally derived autoantibodies can access the fetal compartment to target eight proteins critical for neurodevelopment. We examined the relationship between maternal autoantibodies to the eight maternal autoantibody-related autism proteins and cytokine/chemokine profiles in the second trimester of pregnancy in mothers of children later diagnosed with autism and their neonates' cytokine/chemokine profiles. Using banked maternal serum samples from 15 to 19 weeks of gestation from the Early Markers for Autism Study and corresponding banked newborn bloodspots, we identified three maternal/offspring groups based on maternal autoantibody status: (1) mothers with autoantibodies to one or more of the eight maternal autoantibody-related autismassociated proteins but not a maternal autoantibody-related autism-specific pattern, (2) mothers with a known maternal autoantibody-related autism pattern, and (3) mothers without autoantibodies to any of the eight maternal autoantibody-related autism proteins. Using a multiplex platform, we measured maternal second trimester and neonatal cytokine/chemokine levels. This combined analysis aimed to determine potential associations between maternal autoantibodies and the maternal and neonatal cytokine/chemokine profiles, each of which has been shown to have implications on offspring neurodevelopment independently.
Asunto(s)
Trastorno Autístico , Autoanticuerpos , Quimiocinas , Citocinas , Humanos , Femenino , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Embarazo , Citocinas/sangre , Recién Nacido , Trastorno Autístico/inmunología , Trastorno Autístico/sangre , Adulto , Quimiocinas/sangre , Quimiocinas/inmunología , Masculino , Segundo Trimestre del Embarazo/inmunología , Segundo Trimestre del Embarazo/sangreRESUMEN
Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.
Asunto(s)
Encéfalo , Citocinas , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo , Placenta , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Femenino , Animales , Embarazo , Masculino , Citocinas/metabolismo , Citocinas/genética , Ratones , Encéfalo/metabolismo , Encéfalo/inmunología , Encéfalo/embriología , Placenta/metabolismo , Placenta/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/metabolismo , Poli I-C/toxicidad , Transcriptoma , Modelos Animales de Enfermedad , Feto/metabolismoRESUMEN
BACKGROUND: Neuroinflammation is involved in the pathogenesis of almost every central nervous system disorder. As the brain's innate immune cells, microglia fine tune their activity to a dynamic brain environment. Previous studies have shown that repeated bouts of peripheral inflammation can trigger long-term changes in microglial gene expression and function, a form of innate immune memory. METHODS AND RESULTS: In this study, we used multiple low-dose lipopolysaccharide (LPS) injections in adult mice to study the acute cytokine, transcriptomic, and microglia morphological changes that contribute to the formation of immune memory in the frontal cortex, hippocampus, and striatum, as well as the long-term effects of these changes on behavior. Training and tolerance of gene expression was shared across regions, and we identified 3 unique clusters of DEGs (2xLPS-sensitive, 4xLPS-sensitive, LPS-decreased) enriched for different biological functions. 2xLPS-sensitive DEG promoters were enriched for binding sites for IRF and NFkB family transcription factors, two key regulators of innate immune memory. We quantified shifts in microglia morphological populations and found that while the proportion of ramified and rod-like microglia mostly remained consistent within brain regions and sexes with LPS treatment, there was a shift from ameboid towards hypertrophic morphological states across immune memory states and a dynamic emergence and resolution of events of microglia aligning end-to-end with repeated LPS. CONCLUSIONS: Together, findings support the dynamic regulation of microglia during the formation of immune memories in the brain and support future work to exploit this model in brain disease contexts.
Asunto(s)
Encéfalo , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Lipopolisacáridos/farmacología , Ratones , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/inmunología , Femenino , Citocinas/metabolismoRESUMEN
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Asunto(s)
Asma , Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Animales , Humanos , Enfermedades Neuroinflamatorias , Trastorno del Espectro Autista/epidemiología , Comorbilidad , Asma/epidemiología , Trastornos del Neurodesarrollo/epidemiología , Modelos Animales de EnfermedadRESUMEN
In studies investigating the etiology and pathophysiology of autism spectrum disorder (ASD), immune dysregulation is commonly observed, with elevated levels of inflammatory cytokines frequently found in gestational tissues. However, studies investigating the relationship between early immune dysregulation within the umbilical cord blood (CB) compartment and neurodevelopmental outcomes remains limited. In this exploratory study, we utilized data from the prospective Markers for Autism Risk in Babies - Learning Early Signs (MARBLES) study to examine cytokine levels in the plasma fraction of CB in infants later diagnosed with ASD (n = 38) compared to infants typically developing (TD) at age 3 years (n = 103), using multiplex cytokine assays. Our findings reveal altered levels of several inflammatory cytokines in children later diagnosed with ASD, including increased granulocyte colony-stimulating factor (G-CSF) and decreased interleukin-1α (IL-1α), IL-1ß, and IL-4 in CB. Furthermore, we identified several associations between behaviors and levels of cytokines, chemokines and growth factors. IL-1α, IL-17A, interferon γ-induced protein 10 (IP-10), and epidermal growth factor (EGF) were associated with worse scores on Autism Diagnostic Observation Schedule (ADOS) and the Mullen Scales of Early Learning (MSEL) assessments. In summary, our study demonstrates dysregulated levels of inflammatory cytokine mediators in the CB of children later diagnosed with ASD and that inflammatory mediators were associated with ASD severity, comorbid behaviors, and neurodevelopmental measures. These findings have important implications for the possible predictive value of early cytokine measures in neurodevelopmental outcomes and subsequent behavioral manifestations.
Asunto(s)
Trastorno del Espectro Autista , Citocinas , Sangre Fetal , Humanos , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/inmunología , Sangre Fetal/metabolismo , Femenino , Masculino , Citocinas/sangre , Preescolar , Estudios Prospectivos , Lactante , Interleucina-1alfa/sangre , Factor Estimulante de Colonias de Granulocitos/sangre , Interleucina-1beta/sangre , Interleucina-4/sangre , Interleucina-17/sangre , Factor de Crecimiento Epidérmico/sangreRESUMEN
Inflammation during pregnancy is associated with an increased risk for neurodevelopmental disorders (NDD). Increased gestational inflammation can be a result of an immune condition/disease, exposure to infection, and/or environmental factors. Epidemiology studies suggest that cases of NDD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with NDD such as autism spectrum disorders (ASD). Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were sensitized for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA to induce allergic asthma or phosphate buffered saline (PBS) for 1 h. Following the 1-h exposure, pregnant females were then exposed to UIS with a size distribution of 55 to 169 nm at an average concentration of 176 ± 45 µg/m3) (SD), or clean air for 4 h, over 8 exposure sessions. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1ß), and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. There was a suppressive effect of the combined MAA plus UIS on the anti-inflammatory cytokine IL-10. Potentially shifting the cytokine balance towards more neuroinflammation. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Asunto(s)
Asma , Efectos Tardíos de la Exposición Prenatal , Humanos , Animales , Embarazo , Ratones , Niño , Femenino , Material Particulado/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Asma/inducido químicamente , Citocinas , InflamaciónRESUMEN
Immune dysregulation, including aberrant peripheral cytokine/chemokine levels, is implicated in neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD). While the diagnosis of ASD is more common in males compared to females, sex effects in immune dysregulation related to neurodevelopment remain understudied. The aim of this exploratory study was to determine whether there are sex-specific effects in neonatal immune dysregulation with respect to an ASD or delayed development (DD) diagnosis. We utilized the data from the Early Markers for Autism study, a population based case-control study of prenatal and neonatal biomarkers of ASD. The immune profile of newborns later diagnosed with ASD (n = 482, 91 females), DD (n = 140, 61 females) and sex-matched general population controls (GP; n = 378, 67 females) were analyzed using neonatal bloodspots (NBS) via 42-plex multiplex assay. Multiple linear regression analysis was performed to identify whether sex was associated with differences in cytokine/chemokine levels of children with ASD, DD, and GP. A sex by diagnosis interaction effect was observed only for the chemokine macrophage migration inhibitory factor (MIF), with males displaying higher levels of NBS MIF than females in the GP control group (p = 0.02), but not in ASD (p = 0.52) or DD (p = 0.29) groups. We found that regardless of child diagnosis, newborn bloodspot eluates from females had a significantly higher concentration than males with the same diagnosis of the chemokines granulocyte chemotactic protein 2 (GCP-2; p < 0.0001), macrophage inflammatory protein 2-alpha (GROß; p = 0.002), interferon-inducible t-cell alpha chemoattractant (I-TAC; p < 0.0001), stromal cell-derived factor 1 alpha and beta (SDF-1α-ß; p = 0.03), innate inflammatory chemokines interferon-gamma induced protein 10 (IP-10; p = 0.02), macrophage inflammatory protein 1-alpha (MIP-1α; p = 0.02), and Th1-related pro-inflammatory cytokine interleukin-12 active heterodimer (IL-12p70; p = 0.002). In contrast, males had a higher concentration than females of secondary lymphoid-tissue chemokine (6CKINE; p = 0.02), monocyte chemotactic protein 1 (MCP-1; p = 0.005) and myeloid progenitor inhibitory factor 1 (MPIF-1; p = 0.03). Results were similar when analyses were restricted to NBS from DD and ASD further classified as ASD with intellectual disability (ID), ASD without ID, and DD (GCP-2, p = 0.007; I-TAC, p = 0.001; IP-10, p = 0.005; IL-12p70, p = 0.03 higher in females; MPIF-1, p = 0.03 higher in male). This study is the first to examine sex differences in neonatal cytokine/chemokine concentrations, and whether these differences are associated with neurodevelopmental outcomes. Results highlight the importance of considering sex as a critical factor in understanding the immune system as it relates to child development.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Factores Inhibidores de la Migración de Macrófagos , Factores Sexuales , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Estudios de Casos y Controles , Quimiocina CXCL10 , Interleucina-12 , Oxidorreductasas Intramoleculares , Trastornos del NeurodesarrolloRESUMEN
Maternal autoantibody-related ASD (MAR ASD) is a subtype of autism in which pathogenic maternal autoantibodies (IgG) cross the placenta, access the developing brain, and cause neurodevelopmental alterations and behaviors associated with autism in the exposed offspring. We previously reported maternal IgG response to eight proteins (CRMP1, CRMP2, GDA LDHA, LDHB, NSE, STIP1, and YBOX) and that reactivity to nine specific combinations of these proteins (MAR ASD patterns) was predictive of ASD risk. The aim of the current study was to validate the previously identified MAR ASD patterns (CRMP1 + GDA, CRMP1 + CRMP2, NSE + STIP1, CRMP2 + STIP1, LDHA + YBOX, LDHB + YBOX, GDA + YBOX, STIP1 + YBOX, and CRMP1 + STIP1) and their accuracy in predicting ASD risk in a prospective cohort employing maternal samples collected prior to parturition. We used prenatal plasma from mothers of autistic children with or without co-occurring intellectual disability (ASD = 540), intellectual disability without autism (ID = 184) and general population controls (GP = 420) collected by the Early Markers for Autism (EMA) study. We found reactivity to one or more of the nine previously identified MAR ASD patterns in 10% of the ASD group compared with 4% of the ID group and 1% of the GP controls (ASD vs GP: Odds Ratio (OR) = 7.81, 95% Confidence Interval (CI) 3.32 to 22.43; ASD vs ID: OR = 2.77, 95% CI (1.19-7.47)) demonstrating that the MAR ASD patterns are strongly associated with the ASD group and could be used to assess ASD risk prior to symptom onset. The pattern most strongly associated with ASD was CRMP1 + CRMP2 and increased the odds for an ASD diagnosis 16-fold (3.32 to >999.99). In addition, we found that several of these specific MAR ASD patterns were strongly associated with ASD with intellectual disability (ASD + ID) and others associated with ASD without ID (ASD-no ID). Prenatal screening for these MAR patterns may lead to earlier identification of ASD and facilitate access to the appropriate early intervention services based on each child's needs.
Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Niño , Embarazo , Femenino , Humanos , Discapacidad Intelectual/etiología , Estudios Prospectivos , Trastorno del Espectro Autista/etiología , Autoanticuerpos , Biomarcadores , Inmunoglobulina GRESUMEN
Epidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents. We sought to better understand the molecular signatures characterizing the MIA model in an organism more closely related to humans, rhesus monkeys (Macaca mulatta), by evaluating changes in global metabolic profiles in MIA-exposed offspring. Herein, we present the global metabolome in six peripheral tissues (plasma, cerebrospinal fluid, three regions of intestinal mucosa scrapings, and feces) from 13 MIA and 10 control offspring that were confirmed to display atypical neurodevelopment, elevated immune profiles, and neuropathology. Differences in lipid, amino acid, and nucleotide metabolism discriminated these MIA and control samples, with correlations of specific metabolites to behavior scores as well as to cytokine levels in plasma, intestinal, and brain tissues. We also observed modest changes in fecal and intestinal microbial profiles, and identify differential metabolomic profiles within males and females. These findings support a connection between maternal immune activation and the metabolism, microbiota, and behavioral traits of offspring, and may further the translational applications of the MIA model and the advancement of biomarkers for neurodevelopmental disorders such as ASD or schizophrenia.
Asunto(s)
Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal , Embarazo , Masculino , Animales , Femenino , Humanos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Primates , MetabolomaRESUMEN
BACKGROUND: Inflammation and increases in inflammatory cytokines are common findings in psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Meta-analyses of studies that measured circulating cytokines have provided evidence of innate inflammation across all three disorders, with some overlap of inflammatory cytokines such as IL-6 and TNF-α. However, differences across disorders were also identified, including increased IL-4 in BD that suggest different immune mechanisms may be involved depending on the type of disorder present. METHODS: We sought to identify if the presence or absence of an affective disorder in first-episode psychotic (FEP) patients was associated with variations in cytokine production after stimulation of peripheral blood mononuclear cells (PBMC). 98 participants were recruited and grouped into healthy controls (n = 45) and first-episode psychosis patients (n = 53). Psychosis patients were further grouped by presence (AFF; n = 22) or lack (NON; n = 31) of an affective disorder. We cultured isolated PBMC from all participants for 48 h at 37 °C under four separate conditions; (1) culture media alone for baseline, or the following three stimulatory conditions: (2) 25 ng/mL lipopolysaccharide (LPS), (3) 10 ng/mL phytohemagglutinin (PHA), and (4) 125 ng/ml α-CD3 plus 250 ng/ml α-CD28. Supernatants collected at 48 h were analyzed using multiplex Luminex assay to identify differences in cytokine and chemokine production. Results from these assays were then correlated to patient clinical assessments for positive and negative symptoms common to psychotic disorders. RESULTS: We found that PBMC from affective FEP patients produced higher concentrations of cytokines associated with both innate and adaptive immunity after stimulation than non-affective FEP patients and healthy controls. More specifically, the AFF PBMC produced increased tumor necrosis fctor (TNF)-α, interleukin (IL)-1ß, IL-6, and others associated with innate inflammation. PBMC from AFF also produced increased IL-4, IL-17, interferon (IFN)γ, and other cytokines associated with adaptive immune activation, depending on stimulation. Additionally, inflammatory cytokines that differed at rest and after LPS stimulation correlated with Scale for the Assessment of Negative Symptoms (SANS) scores. CONCLUSIONS: Our findings suggest that immune dysfunction in affective psychosis may differ from that of primary psychotic disorders, and inflammation may be associated with increased negative symptoms. These findings could be helpful in determining clinical diagnosis after first psychotic episode.
Asunto(s)
Trastorno Depresivo Mayor , Enfermedades del Sistema Inmune , Trastornos Psicóticos , Humanos , Leucocitos Mononucleares , Lipopolisacáridos , Interleucina-4 , Interleucina-6 , Trastornos del Humor/etiología , Citocinas , Inflamación , Inmunidad InnataRESUMEN
This study aimed to investigate the immediate and continual perturbation to the gut microbiota of offspring in the weeks post-weaning and how these may be modulated by treating pregnant C57BL/6J dams with antibiotics (ABX). We used a broad-spectrum antibiotic cocktail consisting of ampicillin 1 mg/mL, neomycin 1 mg/mL, and vancomycin 0.5 mg/mL, or vancomycin 0.5 mg/mL alone, administered ad-lib orally to dams via drinking water during gestation and stopped after delivery. We analyzed the gut microbiota of offspring, cytokine profiles in circulation, and the brain to determine if there was evidence of a gut-immune-brain connection. Computationally predicted metabolic pathways were calculated from 16s rRNA sequencing data. ABX treatment can negatively affect the gut microbiota, including reduced diversity, altered metabolic activity, and immune function. We show that the maternal ABX-treatment continues to alter the offspring's gut microbiota diversity, composition, and metabolic pathways after weaning, with the most significant differences evident in 5-week-olds as opposed to 4-week-olds. Lower levels of chemokines and inflammatory cytokines, such as interleukin (IL)-1α and IL-2, are also seen in the periphery and brains of offspring, respectively. In conclusion, this study shows maternal antibiotic administration alters gut microbiome profiles in offspring, which undergoes a continuous transformation, from week to week, at an early age after weaning.
Asunto(s)
Microbioma Gastrointestinal , Animales , Ratones , Embarazo , Femenino , Destete , Vancomicina , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones Endogámicos C57BL , InmunidadRESUMEN
BACKGROUND: Stress during pregnancy and maternal inflammation are two common prenatal factors that impact offspring development. Asthma is the leading chronic condition complicating pregnancy and a common source of prenatal stress and inflammation. OBJECTIVE: The goal of this study was to characterize the developmental impact of repeated allergic asthma inflammation during pregnancy on offspring behavioral outcomes and brain inflammation. METHODS: Pregnant female C57BL/6 mice were sensitized with ovalbumin (OVA) or PBS vehicle control and then randomly assigned to receive daily aerosol exposures to the same OVA or PBS treatment during early, gestational days (GD) 2-GD9, or late pregnancy, GD10-GD17. Maternal sera were collected after the first and last aerosol induction regimen and measured for concentrations of corticosterone, anti-OVA IgE, and cytokine profiles. Juvenile male and female offspring were assessed for locomotor and social behaviors and later as adults assessed for anxiety-like, and marble burying behaviors using a series of behavioral tasks. Offspring brains were evaluated for region-specific differences in cytokine concentrations. RESULTS: In early gestation, both PBS and OVA-exposed dams had similar serum corticosterone concentration at the start (GD2) and end (GD9) of daily aerosol inductions. Only OVA-exposed dams showed elevations in cytokines that imply a diverse and robust T helper cell-mediated immune response. Male offspring of early OVA-exposed dams showed decreases in open-arm exploration in the elevated plus maze and increased marble burying without concomitant changes in locomotor activity or social interactions. These behavioral deficits in early OVA-exposed male offspring were associated with lower concentrations of G-CSF, IL-4, IL-7, IFNγ, and TNFα in the hypothalamus. In late gestation, both PBS and OVA-exposed dams had increased corticosterone levels at the end of daily aerosol inductions (GD17) compared to at the start of inductions (GD10). Male offspring from both PBS and OVA-exposed dams in late gestation showed similar decreases in open arm exploration on the elevated plus maze compared to OVA male offspring exposed in early gestation. No behavioral differences were present in female offspring across all treatment groups. However, females of dams exposed to OVA during early gestation displayed similar reductions as males in hypothalamic G-CSF, IL-7, IL-4, and IFNγ. DISCUSSION: The inflammatory responses from maternal allergic asthma in early gestation and resulting increases in anxiety-like behavior in males support a link between the timing of prenatal insults and sex-specific developmental outcomes. Moreover, the heightened stress responses in late gestation and concomitant dampened inflammatory response to allergic asthma suggest that interactions between the maternal immune and stress-response systems shape early life fetal programming.
Asunto(s)
Asma , Efectos Tardíos de la Exposición Prenatal , Adulto , Animales , Asma/inducido químicamente , Encéfalo , Femenino , Humanos , Masculino , Exposición Materna , Ratones , Ratones Endogámicos C57BL , EmbarazoRESUMEN
The BTBR T+Itpr3tf/J (BTBR) mouse has been used as a complex genetic model of Autism Spectrum Disorders (ASD). While the specific mechanisms underlying BTBR behavioral phenotypes are poorly understood, prior studies have implicated profound differences in innate immune system control of pro-inflammatory cytokines. Innate immune activation and elevated pro-inflammatory cytokines are also detected in blood of children with ASD. In this study, we examined how underlying BTBR genetic variants correspond to strain-specific changes in chromatin accessibility, resulting in a pro-inflammatory response specifically in BTBR bone marrow derived macrophages (BMDM). In response to repeated lipopolysaccharide (LPS) treatments, C57BL/6J (C57) BMDM exhibited intact endotoxin tolerance. In contrast, BTBR BMDM exhibited hyper-responsive expression of genes that were normally tolerized in C57. This failure in formation of endotoxin tolerance in BTBR was mirrored at the level of chromatin accessibility. Using ATAC-seq, we specifically identified promoter and enhancer regions with strain-specific differential chromatin accessibility both at baseline and in response to LPS. Regions with strain-specific differences in chromatin accessibility were significantly enriched for BTBR genetic variants, such that an average of 22% of the differential chromatin regions had at least one variant. Together, these results demonstrate that BTBR genetic variants contribute to altered chromatin responsiveness to endotoxin challenge resulting in hyper-responsive innate immunity in BTBR. These findings provide evidence for an interaction between complex genetic variants and differential epigenetic regulation of innate immune responses.
Asunto(s)
Endotoxinas , Epigénesis Genética , Animales , Modelos Animales de Enfermedad , Macrófagos , Ratones , Ratones Endogámicos C57BLRESUMEN
Dysregulation in immune responses during pregnancy increases the risk of a having a child with an autism spectrum disorder (ASD). Asthma is one of the most common chronic diseases among pregnant women, and symptoms often worsen during pregnancy. We recently developed a mouse model of maternal allergic asthma (MAA) that induces changes in sociability, repetitive, and perseverative behaviors in the offspring. Since epigenetic changes help a static genome adapt to the maternal environment, activation of the immune system may epigenetically alter fetal microglia, the brain's resident immune cells. We therefore tested the hypothesis that epigenomic alterations to microglia may be involved in behavioral abnormalities observed in MAA offspring. We used the genome-wide approaches of whole genome bisulfite sequencing to examine DNA methylation and RNA sequencing to examine gene expression in microglia from juvenile MAA offspring. Differentially methylated regions were enriched for immune signaling pathways and important microglial developmental transcription factor binding motifs. Differential expression analysis identified genes involved in controlling microglial sensitivity to the environment and shaping neuronal connections in the developing brain. Differentially expressed genes significantly overlapped genes with altered expression in human ASD cortex, supporting a role for microglia in the pathogenesis of ASD.
Asunto(s)
Asma/metabolismo , Trastorno Autístico/metabolismo , Epigénesis Genética , Hipersensibilidad/metabolismo , Microglía/metabolismo , Efectos Tardíos de la Exposición Prenatal , Animales , Trastorno Autístico/genética , Metilación de ADN , Modelos Animales de Enfermedad , Femenino , Expresión Génica/fisiología , Ratones Endogámicos C57BL , Embarazo , Distribución Aleatoria , Análisis de Secuencia de ARN , Transcriptoma/fisiología , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Over the past 30 years, evidence has been accumulating for an immunological component to schizophrenia etiology, including genetic links to the major histocompatibility complex, microglia activation, and dysregulated cytokine profiles. However, the degree of similarity in cytokine profiles for schizophrenia and bipolar disorder, as well as the relationship between cytokine levels and brain structure, is less well understood. METHODS: To address this, we recruited 69 first-episode schizophrenia-spectrum patients, 16 first-episode bipolar patients with psychotic features, and 53 healthy controls, from the UC Davis EDAPT clinic. Blood plasma was collected and analyzed for all participants with a subset of participants that also underwent structural MRI on a 1.5T GE scanner. RESULTS: Plasma levels of interleukin (IL)-1ß, IL-2, IL-6, and interferon (IFN)-γ were elevated in schizophrenia patients compared to those in controls. Patients with bipolar disorder had elevated plasma IL-10 levels compared to controls, and the two patient groups did not differ significantly on any immunological measure. Percent whole-brain gray matter was inversely correlated with IFN-γ and IL-12 levels in patients with schizophrenia, with a trend relationship between IFN-γ and IL-12 and prefrontal cortical thickness. Furthermore, psychotic symptoms were positively related to IL-1ß levels in individuals with schizophrenia. CONCLUSIONS: These data suggest a partially overlapping pattern of elevated blood cytokine levels in patients with first-episode schizophrenia and bipolar disorder with psychotic features. Furthermore, our findings suggest that elevated pro-inflammatory cytokines may be particularly involved in schizophrenia etiology, given evidence of cytokine-related decreases in total gray matter.
Asunto(s)
Trastorno Bipolar/sangre , Trastorno Bipolar/patología , Encéfalo/patología , Citocinas/sangre , Esquizofrenia/sangre , Esquizofrenia/patología , Adolescente , Adulto , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Escalas de Valoración Psiquiátrica , Esquizofrenia/diagnóstico por imagen , Adulto JovenRESUMEN
Several groups have described the presence of fetal brain-reactive maternal autoantibodies in the plasma of some mothers whose children have autism spectrum disorder (ASD). We previously identified seven autoantigens targeted by these maternal autoantibodies, each of which is expressed at significant levels in the developing brain and has demonstrated roles in typical neurodevelopment. To further understand the binding repertoire of the maternal autoantibodies, as well as the presence of any meaningful differences with respect to the recognition and binding of these ASD-specific autoantibodies to each of these neuronal autoantigens, we utilized overlapping peptide microarrays incubated with maternal plasma samples obtained from the Childhood Autism Risk from Genetics and Environment (CHARGE) Study. In an effort to identify the most commonly recognized (immunodominant) epitope sequences targeted by maternal autoantibodies for each of the seven ASD-specific autoantigens, arrays were screened with plasma from mothers with children across diagnostic groups (ASD and typically developing (TD)) that were positive for at least one antigen by western blot (Nâ¯=â¯67) or negative control mothers unreactive to any of the autoantigens (Nâ¯=â¯18). Of the 63 peptides identified with the discovery microarrays, at least one immunodominant peptide was successfully identified for each of the seven antigenic proteins using subsequent selective screening microarrays. Furthermore, while limited by our relatively small sample size, there were peptides that were distinctly recognized by autoantibodies relative to diagnosis For example, reactivity was observed exclusively in mothers of children of ASD towards several peptides, including the LDH-B peptides DCIIIVVSNPVDILT (9.1% ASD vs. 0% TD; odds ratio (95% CI)â¯=â¯6.644 (0.355-124.384)) and PVAEEEATVPNNKIT (5.5% ASD vs. 0% TD; odds ratio (95% CI)â¯=â¯4.067 (0.203-81.403)).These results suggest that there are differences in the binding repertoire between the antigen positive ASD and TD maternal samples. Further, the autoantibodies in plasma from mothers of children with ASD bound to a more diverse set of peptides, and there were specific peptide binding combinations observed only in this group. Future studies are underway to determine the critical amino acids necessary for autoantibody binding, which will be essential in developing a potential therapeutic strategy for maternal autoantibody related (MAR) ASD.
Asunto(s)
Trastorno del Espectro Autista/inmunología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Encéfalo/inmunología , Epítopos , Adulto , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Madres , Adulto JovenRESUMEN
OBJECTIVES: Many studies have reported the increased presence of gastrointestinal (GI) symptoms in children with autism spectrum disorders (ASD). Altered microbiome profiles, pro-inflammatory responses and impaired intestinal permeability have been observed in children with ASD and co-morbid GI symptoms, yet few studies have compared these findings to ASD children without GI issues or similarly aged typical developing children. The aim of this study was to determine whether there are biological signatures in terms of immune dysfunction and microbiota composition in children with ASD with GI symptoms. METHODS: Children were enrolled in one of four groups: ASD and GI symptoms of irregular bowel habits (ASDGI), children with ASD but without current or previous GI symptoms (ASDNoGI), typically developing children with GI symptoms (TDGI) and typically developing children without current or previous GI symptoms (TDNoGI). Peripheral blood mononuclear cells (PBMC) were isolated from the blood, stimulated and assessed for cytokine production, while stool samples were analyzed for microbial composition. RESULTS: Following Toll-Like receptor (TLR)-4 stimulation, the ASDGI group produced increased levels of mucosa-relevant cytokines including IL-5, IL-15 and IL-17 compared to ASDNoGI. The production of the regulatory cytokine TGFß1 was decreased in the ASDGI group compared with both the ASDNoGI and TDNoGI groups. Analysis of the microbiome at the family level revealed differences in microbiome composition between ASD and TD children with GI symptoms; furthermore, a predictive metagenome functional content analysis revealed that pathways were differentially represented between ASD and TD subjects, independently of the presence of GI symptoms. The ASDGI also showed an over-representation of the gene encoding zonulin, a molecule regulating gut permeability, compared to the other groups. CONCLUSIONS: Overall our findings suggest that children with ASD who experience GI symptoms have an imbalance in their immune response, possibly influenced by or influencing metagenomic changes, and may have a propensity to impaired gut barrier function which may contribute to their symptoms and clinical outcome.