Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 167(4): 1151-1155, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35244762

RESUMEN

Infectious laryngotracheitis virus (ILTV) is the causative agent of an economically important disease of chickens causing upper respiratory tract infection. Strains of ILTV are commonly identified by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and/or PCR high resolution melt (PCR-HRM) curve analysis targeting several genes. However, these techniques examine only a limited number of mutations present inside the target regions and may generate unreliable results when the sample contains more than one strain. Here, we attempted to sequence the whole genome of ILTV with known identity (class 9) directly from tracheal scrapings to circumvent in vitro culturing, which can potentially introduce variations into the genome. Despite the large number of quality reads, mapping was compromised by poor overlapping and gaps, and assembly of the complete genome sequence was not possible. In a map-to-reference alignment, the regions with low coverage were deleted, those with high coverage were concatenated and a genome sequence of 139,465 bp was obtained, which covered 91% of the ILTV genome. Sixteen single-nucleotide polymorphisms (SNPs) were found between the ILTV isolate examined and ILTV class 9 (JN804827). Despite only 91% genome coverage, using sequence analysis and comparison with previously sequenced ILTVs, we were able to classify the isolate as class 9. Therefore, this technique has the potential to replace the current PCR-HRM technique, as it provides detailed information about the ILTV isolates.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Gallináceo 1 , Enfermedades de las Aves de Corral , Animales , Pollos , Infecciones por Herpesviridae/veterinaria , Herpesvirus Gallináceo 1/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
2.
Infect Genet Evol ; 96: 105095, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34597819

RESUMEN

Avian hepatitis E virus (aHEV) is the causative agent of an important disease of broiler breeders and layers. aHEV cannot be readily propagated in cell culture and is characterised primarily by sequencing of amplicons generated through several RT-PCRs that target individual genes. This study aims to uncover the origin of current Australian aHEV isolates based on whole genome sequencing using clinical liver tissues. Complete genome sequences of the two aHEV isolates were assembled using Nanopore and Illumina reads. The two isolates possessed only four single nucleotide polymorphisms to each other. Comparison of the sequences with aHEV genome sequences available in the GenBank showed the highest nucleotide sequence identity of 88% with the prototype USA strain (AY535004), 82% with the European (AM943647) and genotype 1 Australian strains (AM943647). Recombination analysis suggested that aHEV isolates characterised in this study are progeny of a cross between a US and a Hungarian strain. Phylogenetic tree and phylogenetic networks constructed using complete genome and individual coding sequences revealed that Australian aHEV isolates formed a distinct clade closer to the USA strains and classified as genotype 2 whereas genotype 1 Australian strain clustered together with South Korean strains.


Asunto(s)
Pollos , Genoma Viral , Hepatitis Viral Animal/virología , Hepevirus/genética , Enfermedades de las Aves de Corral/virología , Infecciones por Virus ARN/veterinaria , Animales , Femenino , Hígado/virología , Filogenia , Infecciones por Virus ARN/virología , Recombinación Genética , Secuenciación Completa del Genoma
3.
PLoS One ; 16(12): e0261122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34914770

RESUMEN

Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing.


Asunto(s)
Membrana Corioalantoides/virología , Virus de la Viruela de las Aves de Corral/aislamiento & purificación , Viruela Aviar/diagnóstico , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Piel/virología , Secuenciación Completa del Genoma/métodos , Animales , Australia , Embrión de Pollo , Pollos , Viruela Aviar/virología , Virus de la Viruela de las Aves de Corral/clasificación , Virus de la Viruela de las Aves de Corral/genética , Virus de la Viruela de las Aves de Corral/crecimiento & desarrollo , Polimorfismo Genético
4.
J Virol Methods ; 283: 113907, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502499

RESUMEN

Characterisation of the entire genome of Fowl aviadenoviruses (FAdV) requires isolation and propagation of the virus in chicken embryo liver or kidney cells, a process which is not only time consuming but may occasionally fail to result in viral growth. Furthermore, in a mixed infection, isolation in cell culture may result in the loss of viral strains. In this study, we optimised a FAdV DNA extraction technique directly from affected liver tissues using kaolin hydrated aluminium silicate treatment. The whole genome of FAdV was sequenced directly from extracted DNA without any targetted PCR based enrichment. The extraction method was also tested on avian liver tissues affected with the RNA virus Avian hepatitis E virus and demonstrated to yield sequencing grade RNA. Therefore, the method described here is a simple technique which is potentially useful for the extraction of sequencing grade DNA/RNA from tissues with high fat content.


Asunto(s)
Aviadenovirus/genética , ADN Viral/aislamiento & purificación , Hígado/virología , ARN Viral/aislamiento & purificación , Secuenciación Completa del Genoma/métodos , Infecciones por Adenoviridae/virología , Animales , Aviadenovirus/aislamiento & purificación , Pollos/virología , Genoma Viral , Hepatitis , Hepevirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA