Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Chemphyschem ; 25(10): e202300975, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38418402

RESUMEN

A novel experimental approach for the rapid online monitoring of the enantiomeric ratio of chiral analytes in solution is presented. The charged analyte is transferred to the gas phase by electrospray. Diastereomeric complexes are formed with a volatile chiral selector in a buffer-gas-filled ion guide held at room temperature, mass-selected, and subsequently spectrally differentiated by cryogenic ion trap vibrational spectroscopy. Based on the spectra of the pure complexes in a small diastereomer-specific spectral range, the composition of diastereomeric mixtures is characterized using the cosine similarity score, from which the enantiomeric ratio in the solution is determined. The method is demonstrated for acidified alanine solutions and using three different chiral selectors (2-butanol, 1-phenylethanol, 1-amino-2-propanol). Among these, 2-butanol is the best choice as a selector for protonated alanine, also because the formation ratio of the corresponding diastereomeric complexes is found to be independent of the nature of the enantiomer. Subsequently, a microfluidic chip is implemented to mix enantiomerically pure alanine solutions continuously and determine the enantiomeric ratio online with minimal sample consumption within one minute and with competitive accuracy.

2.
Phys Chem Chem Phys ; 26(8): 6600-6607, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38333952

RESUMEN

Vibrational wave-packet dynamics on the ground electronic state of the neutral silver pentamer (Ag5) are studied by femtosecond (fs) pump-probe spectroscopy using the 'negative ion - to neutral - to positive ion' (NeNePo) excitation scheme. A vibrational wave packet is prepared on the 2A1 state of Ag5via photodetachment of mass-selected, cryogenically cooled Ag5- anions using a fs pump pulse. The temporal evolution of the vibrational wave packet is then probed by an ultrafast probe pulse via resonant multiphoton ionization to Ag5+. Frequency analysis of the fs NeNePo transients for pump-probe delay times from 0.2 to 8 ps reveals three primary beating frequencies at 157 cm-1, 101 cm-1 and 56 cm-1 as well as four weaker features. A comparison of these experimentally obtained beating frequencies to harmonic normal mode frequencies calculated from electronic structure calculations confirms that Ag5 in the gas phase adopts a planar trapezoidal geometry, similar to that previously observed in solid argon. The dependence of the ionization yield on the laser polarization indicates a s-d wave electron photodetachment from a 'p-type' occupied molecular orbital of Ag5. Franck-Condon analysis shows that both processes, photodetachment and subsequent photoionization determine the beating frequencies probed in the time-dependent cation yield. The present study extends the applicability of fs NeNePo spectroscopy to characterize the vibrational spectra in the far-IR frequency range in the absence of perturbations from a medium or a messenger atom to mass-selected neutral metal clusters with more than three atoms in the ground electronic states.

3.
Chemistry ; 29(14): e202203384, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36511849

RESUMEN

We report on cluster-mediated C-N bond formation in the gas phase using N2 as a nitrogen source. The V3 C+ +N2 reaction is studied by a combination of ion-trap mass spectrometry with infrared photodissociation (IRPD) spectroscopy and complemented by electronic structure calculations. The proposed reaction mechanism is spectroscopically validated by identifying the structures of the reactant and product ions. V3 C+ exhibits a pyramidal structure of C1 -symmetry. N2 activation is initiated by adsorption in an end-on fashion at a vanadium site, followed by spontaneous cleavage of the N≡N triple bond and subsequent C-N coupling. The IRPD spectrum of the metal nitride product [NV3 (C=N)]+ exhibits characteristic C=N double bond (1530 cm-1 ) and V-N single bond (770, 541 and 522 cm-1 ) stretching bands.

4.
Chemistry ; 29(72): e202302247, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37749942

RESUMEN

Superelectrophilic anions constitute a special class of molecular anions that show strong binding of weak nucleophiles despite their negative charge. In this study, the binding characteristics of smaller gaseous electrophilic anions of the types [B6 X5 ]- and [B10 X9 ]- (with X=Cl, Br, I) were computationally and experimentally investigated and compared to those of the larger analogues [B12 X11 ]- . The positive charge of vacant boron increases from [B6 X5 ]- via [B10 X9 ]- to [B12 X11 ]- , as evidenced by increasing attachment enthalpies towards typical σ-donor molecules (noble gases, H2 O). However, this behavior is reversed for σ-donor-π-acceptor molecules. [B6 Cl5 ]- binds most strongly to N2 and CO, even more strongly than to H2 O. Energy decomposition analysis confirms that the orbital interaction is responsible for this opposite trend. The extended transition state natural orbitals for chemical valence method shows that the π-backdonation order is [B6 X5 ]- >[B10 X9 ]- >[B12 X11 ]- . This predicted order explains the experimentally observed red shifts of the CO and N2 stretching fundamentals compared to those of the unbound molecules, as measured by infrared photodissociation spectroscopy. The strongest red shift is observed for [B6 Cl5 N2 ]- : 222 cm-1 . Therefore, strong activation of unreactive σ-donor-π-acceptor molecules (commonly observed for cationic transition metal complexes) is achieved with metal-free molecular anions.

5.
Phys Chem Chem Phys ; 25(36): 24313-24320, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37664952

RESUMEN

The nuclear quantum dynamics on the ground electronic state of the neutral silver dimer 107Ag109Ag are studied by femtosecond (fs) pump-probe spectroscopy using the 'negative ion - to neutral - to positive ion' (NeNePo) excitation scheme. A vibrational wave packet is prepared on the X1Σ+g state of Ag2via photodetachment of mass-selected, cryogenically cooled Ag2- using a first ultrafast pump laser pulse. The temporal evolution of the wave packet is then probed by an ultrafast probe pulse via resonant multiphoton ionization to Ag2+. Frequency analysis of the fs-NeNePo spectra obtained for a single isotopologue and pump-probe delay times up to 60 ps yields the harmonic (ωe = 192.2 cm-1), quadratic anharmonic (ωexe = 0.637 cm-1) and cubic anharmonic (ωeye = 3 × 10-4 cm-1) constants for the X1Σ+g state of neutral Ag2. The fs-NeNePo spectra obtained at different pump wavelengths provide insight into the excitation mechanism. At a pump wavelength of 510 nm instead of 1010 nm, resonant excitation of a short-lived electronically excited state of the anion followed by autodetachment results in population of higher-energy vibrational levels of the neutral ground state. In contrast, at 1140 nm dynamics with a slightly shorter beating period and different relative phase are observed. The present study demonstrates that isotopologue-specific fs-NeNePo spectroscopy provides accurate vibrational constants of mass-selected neutral clusters in their electronic ground state in the terahertz spectral region, which remains difficult to obtain directly in the frequency domain with any other type of spectroscopy of comparable sensitivity.

6.
Phys Chem Chem Phys ; 25(6): 5262-5270, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36723211

RESUMEN

The vibrational spectra of the copper(I) cation-dihydrogen complexes Cu+(H2)4, Cu+(D2)4 and Cu+(D2)3H2 are studied using cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations. The infrared photodissociation (IRPD) spectra (2500-7300 cm-1) are assigned based on a comparison to IR spectra calculated using vibrational second-order perturbation theory (VPT2). The IRPD spectra exhibit ≈60 cm-1 broad bands that lack rotational resolution, indicative of rather floppy complexes even at an ion trap temperature of 10 K. The observed vibrational features are assigned to the excitations of dihydrogen stretching fundamentals, combination bands of these fundamentals with low energy excitations as well as overtone excitations of a minimum-energy structure with Cs symmetry. The three distinct dihydrogen positions present in the structure can interconvert via pseudorotations with energy barriers less than 10 cm-1, far below the zero-point vibrational energy. Ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations confirm the fluxional behavior of these complexes and yield an upper limit for the timeframe of the pseudorotation on the order of 10 ps. For Cu+(D2)3H2, the H2 and D2 loss channels yield different IRPD spectra indicating non-ergodic behavior.

7.
J Phys Chem A ; 127(7): 1636-1641, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36786668

RESUMEN

Understanding the active sites and reaction mechanisms of Ni-based catalysts, such as Ni/Al2O3, toward methane is a prerequisite for improving their rational design. Here, the gas-phase reactivity of NiAlO3+ cations toward CH4 is studied using mass spectrometry combined with density functional theory. Similar to our previous study on NiAl2O4+, we find evidence for the formation of both the methyl radical (CH3•) and formaldehyde (CH2O). The first step for methane activation is hydrogen atom abstraction by the terminal oxygen radical Ni(O)2AlO• from methane forming a [Ni(O)2AlOH+, •CH3] complex and leaving the Ni-oxidation state unchanged. The second C-H bond is subsequently activated by the association of a bridged Ni-O2--Al. The oxidation state of the Ni atom is reduced from +3 to +1 during the formation of formaldehyde. Compared to Al2O3+/CH4 and YAlO3+/CH4 systems, the Ni-atom substitution increases the overall reaction rate by roughly an order of magnitude and yields a CH3•/CH2O branching ratio of 0.62/0.38. The present study provides molecular-level insights into the highly efficient gas-phase reaction mechanism contributing to an improved understanding of methane conversion by Ni/Al2O3 catalysts.

8.
J Phys Chem A ; 127(14): 3133-3147, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37014811

RESUMEN

High-resolution photoelectron spectra of vibrationally pre-excited vinoxide anions (CH2CHO-) are reported using the recently developed IR-cryo-SEVI technique. This method is combined with a newly developed implementation of vibrational perturbation theory that can readily identify relevant anharmonic couplings among nearly degenerate vibrational states. IR-cryo-SEVI spectra are obtained by resonant infrared excitation of vinoxide anions via the fundamental C-O (ν4, 1566 cm-1) or isolated C-H (ν3, 2540 cm-1) stretching vibrations prior to photodetachment. Excitation of the ν4 mode leads to a well-resolved photoelectron spectrum that is in excellent agreement with a harmonic Franck-Condon simulation. Excitation of the higher-energy ν3 mode results in a more complicated spectrum that requires consideration of the calculated anharmonic resonances in both the anion and the neutral. From this analysis, information about the zeroth-order states that contribute to the nominal ν3 wave function in the anion is obtained. In the neutral, we observe anharmonic splitting of the ν3 fundamental into a polyad feature with peaks at 2737(22), 2 835(18), and 2910(12) cm-1, for which only the center frequency has been previously reported. Overall, 9 of the 12 fundamental frequencies of the vinoxy radical are extracted from the IR-cryo-SEVI and ground-state cryo-SEVI spectra, most of which are consistent with previous measurements. However, we provide a new estimate of the ν5 (CH2 scissoring) fundamental frequency at 1395(11) cm-1 and attribute the discrepancy with previously reported values to a Fermi resonance with the 2ν11 overtone (CH2 wagging).

9.
Proc Natl Acad Sci U S A ; 117(38): 23374-23379, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32878996

RESUMEN

Alkanes and [B12X12]2- (X = Cl, Br) are both stable compounds which are difficult to functionalize. Here we demonstrate the formation of a boron-carbon bond between these substances in a two-step process. Fragmentation of [B12X12]2- in the gas phase generates highly reactive [B12X11]- ions which spontaneously react with alkanes. The reaction mechanism was investigated using tandem mass spectrometry and gas-phase vibrational spectroscopy combined with electronic structure calculations. [B12X11]- reacts by an electrophilic substitution of a proton in an alkane resulting in a B-C bond formation. The product is a dianionic [B12X11CnH2n+1]2- species, to which H+ is electrostatically bound. High-flux ion soft landing was performed to codeposit [B12X11]- and complex organic molecules (phthalates) in thin layers on surfaces. Molecular structure analysis of the product films revealed that C-H functionalization by [B12X11]- occurred in the presence of other more reactive functional groups. This observation demonstrates the utility of highly reactive fragment ions for selective bond formation processes and may pave the way for the use of gas-phase ion chemistry for the generation of complex molecular structures in the condensed phase.

10.
Phys Chem Chem Phys ; 24(35): 20913-20920, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36017635

RESUMEN

The infrared photodissociation spectra of He-tagged (Al2O3)nFeO+ (n = 2-5), are reported in the Al-O and Fe-O stretching and bending spectral region (430-1200 cm-1) and assigned based on calculated harmonic IR spectra from density functional theory (DFT). The substitution of Fe for an Al center occurs preferentially at 3-fold oxygen coordination sites located at the cluster rim and with the Fe atom in the +III oxidation state. The accompanying elongation of metal oxygen bonds leaves the Al-O network structure nearly unperturbed (isomorphous substitution). Contrary to the Al2FeO4+ (n = 1), valence isomerism is not observed, which is attributed to a smaller M:O ratio (M = Al, Fe) and consequently decreasing electron affinities with increasing cluster size.

11.
Phys Chem Chem Phys ; 24(36): 21759-21772, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36097953

RESUMEN

The highly reactive gaseous ion [B12Br11]- is a metal-free closed-shell anion which spontaneously forms covalent bonds with hydrocarbon molecules, including alkanes. Herein, we systematically investigate the reaction mechanism for binding of [B12Br11]- to the five hexane isomers yielding [B12Br11(C6H14)]-, as well as to cyclohexane and several hexene isomers (yielding [B12Br11(C6H12)]-) using collision-induced dissociation (CID), infrared photodissociation spectroscopy (IRPD) and computational methods. CID of the different [B12Br11(C6H14)]- ions results in distinct fragmentation patterns dependent on the structure of the hexane isomer. The observed fragmentation reactions provide insights into the addition mechanism of [B12Br11]- to hexane. Based on the observed CID patterns, we identified that either B-C bond formation through heterolytic C-C or C-H bond cleavages or B-H bond formation through heterolytic C-H cleavage occur dependent on the structure of the hexane isomer. Meanwhile, we observe identical CID spectra of adducts originating from isomers of C6H12. Spectroscopic investigations of adducts of 1-hexene and cyclohexane indicate the same product structure with an open C6 chain. Computational investigations evidenced that low lying transition states are present, which enable a ring opening reaction of cyclohexane when binding to [B12Br11]-.

12.
Proc Natl Acad Sci U S A ; 116(17): 8167-8172, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30952786

RESUMEN

Chemically binding to argon (Ar) at room temperature has remained the privilege of the most reactive electrophiles, all of which are cationic (or even dicationic) in nature. Herein, we report a concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability. To validate our concept, we synthesized the percyano-dodecoborate [B12(CN)12]2-, the electronically most stable dianion ever investigated experimentally. It serves as a precursor for the generation of the monoanion [B12(CN)11]-, which indeed spontaneously binds Ar at 298 K. Our mass spectrometric and spectroscopic studies are accompanied by high-level computational investigations including a bonding analysis of the exceptional B-Ar bond. The detection and characterization of this highly reactive, structurally stable anionic superelectrophile starts another chapter in the metal-free activation of particularly inert compounds and elements.

13.
Angew Chem Int Ed Engl ; 61(29): e202202297, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35460320

RESUMEN

The gas-phase reaction of NiAl2 O4 + with CH4 is studied by mass spectrometry in combination with vibrational action spectroscopy and density functional theory (DFT). Two product ions, NiAl2 O4 H+ and NiAl2 O3 H2 + , are identified in the mass spectra. The DFT calculations predict that the global minimum-energy isomer of NiAl2 O4 + contains Ni in the +II oxidation state and features a terminal Al-O.- oxygen radical site. They show that methane can react along two competing pathways leading to formation of either a methyl radical (CH3 ⋅) or formaldehyde (CH2 O). Both reactions are initiated by hydrogen atom transfer from methane to the terminal O.- site, followed by either CH3 ⋅ loss or CH3 ⋅ migration to an O2- site next to the Ni2+ center. The CH3 ⋅ attaches as CH3 + to O2- and its unpaired electron is transferred to the Ni-center reducing it to Ni+ . The proposed mechanism is experimentally confirmed by vibrational spectroscopy of the reactant and two different product ions.

14.
Angew Chem Int Ed Engl ; 61(16): e202117855, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35088489

RESUMEN

Exotic oxidation states of the first-row transition metals have recently attracted much interest. In order to investigate the oxidation states of a series of iron-oxalate complexes, an aqueous solution of iron(III) nitrate and oxalic acid was studied by infrared free liquid matrix-assisted laser desorption/ionization as well as ionspray mass spectrometry. Here, we show that iron is not only detected in its common oxidation states +II and +III, but also in its unusual oxidation state +I, detectable in both positive-ion and in negative-ion modes, respectively. Vibrational spectra of the gas phase anionic iron oxalate complexes [FeIII (C2 O4 )2 ]- , [FeII (C2 O4 )CO2 ]- , and [FeI (C2 O4 )]- were measured by means of infrared photodissociation spectroscopy and their structures were assigned by comparison to anharmonic vibrational spectra based on second-order perturbation theory.

15.
Chemistry ; 27(40): 10274-10281, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34014012

RESUMEN

Electrophilic anions of type [B12 X11 ]- posses a vacant positive boron binding site within the anion. In a comparatitve experimental and theoretical study, the reactivity of [B12 X11 ]- with X=F, Cl, Br, I, CN is characterized towards different nucleophiles: (i) noble gases (NGs) as σ-donors and (ii) CO/N2 as σ-donor-π-acceptors. Temperature-dependent formation of [B12 X11 NG]- indicates the enthalpy order (X=CN)>(X=Cl)≈(X=Br)>(X=I)≈(X=F) almost independent of the NG in good agreement with calculated trends. The observed order is explained by an interplay of the electron deficiency of the vacant boron site in [B12 X11 ]- and steric effects. The binding of CO and N2 to [B12 X11 ]- is significantly stronger. The B3LYP 0 K attachment enthapies follow the order (X=F)>(X=CN)>(X=Cl)>(X=Br)>(X=I), in contrast to the NG series. The bonding motifs of [B12 X11 CO]- and [B12 X11 N2 ]- were characterized using cryogenic ion trap vibrational spectroscopy by focusing on the CO and N2 stretching frequencies ν C O and ν N 2 , respectively. Observed shifts of ν C O and ν N 2 are explained by an interplay between electrostatic effects (blue shift), due to the positive partial charge, and by π-backdonation (red shift). Energy decomposition analysis and analysis of natural orbitals for chemical valence support all conclusions based on the experimental results. This establishes a rational understanding of [B12 X11 ]- reactivety dependent on the substituent X and provides first systematic data on π-backdonation from delocalized σ-electron systems of closo-borate anions.

16.
Chemphyschem ; 22(11): 1036-1041, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33783947

RESUMEN

The vibrational spectroscopy of lithium dichloride anions microhydrated with one to three water molecules, [LiCl2 (H2 O)1-3 ]- , is studied in the OH stretching region (3800-2800 cm-1 ) using isomer-specific IR/IR double-resonance population labelling experiments. The spectroscopic fingerprints of individual isomers can only be unambiguously assigned after anharmonic effects are considered, but then yield molecular level insight into the onset of salt dissolution in these gas phase model systems. Based on the extent of the observed frequency shifts ΔνOH of the hydrogen-bonded OH stretching oscillators solvent-shared ion pair motifs (<3200 cm-1 ) can be distinguished from intact-core structures (>3200 cm-1 ). The characteristic fingerprint of a water molecule trapped directly in-between two ions of opposite charge provides an alternative route to evaluate the extent of ion pairing in aqueous electrolyte solutions.

17.
J Phys Chem A ; 125(14): 2801-2815, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33769058

RESUMEN

Ephemeral intermediates often hold the key to a more detailed understanding of chemical reaction pathways. Online methods to unambiguously identify the structure of such molecular entities, in particular in the presence of multiple isomers, are scarce. This paper presents a methodology that allows real-time monitoring of isomeric solution-phase reaction intermediates of continuous-flow reactions by coupling a microfluidic chip-reactor to a cryogenic ion trap triple mass spectrometer. The technique combines the excellent reaction control associated with microfluidic chips with the unique specificity and sensitivity of infrared photodissociation (IRPD) spectroscopy, which allows for an unambiguous structural assignment of gaseous ions based on their IR fingerprint. It represents a valuable extension to the instrumentation for online-analysis of reactive intermediates and proves particularly valuable whenever the sensitivity of NMR is not sufficient. After a brief description of the experimental approach, illustrative examples are provided to highlight the application of the chip-IRPD setup for mechanistic studies, particularly for stereoselective processes. The article concludes with an outlook on future challenges and perspectives.

18.
J Phys Chem A ; 125(44): 9571-9577, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34709822

RESUMEN

The gas-phase infrared spectrum of Ti4O10- is studied in the spectral range from 400 cm-1 to 1250 cm-1 using cryogenic ion trap vibrational spectroscopy, in combination with density functional theory (DFT). The infrared photodissociation (IRPD) spectrum of D2-tagged Ti4O10- provides evidence for a structure of lower symmetry that contains a superoxo group (1121 cm-1) and two terminal Ti=O moieties. DFT combined with a genetic algorithm for global structure optimization predicts two isomers which feature a superoxo group: the Cs symmetric global minimum-energy structure and a similar isomer (C1) that is slightly higher in energy. Coupled cluster calculations confirm the relative stability. Comparison of the harmonic DFT spectra (different functionals) with the IRPD spectrum suggests that both of these isomers contribute. Earlier assignments to the adamantane-like C3v isomer with three terminal Ti-O• - groups in a quartet state are not confirmed. They were based on the infrared multiple photon photodissociation (IRMPD) spectrum of bare Ti4O10- and local DFT structure optimizations.

19.
J Phys Chem A ; 125(43): 9527-9535, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34693712

RESUMEN

Isolated nickel-doped aluminum oxide cations (NiOm)(Al2O3)n(AlO)+ with m = 1-2 and n = 1-3 are investigated by infrared photodissociation (IRPD) spectroscopy in combination with density functional theory and the single-component artificial force-induced reaction method. IRPD spectra of the corresponding He-tagged cations are reported in the 400-1200 cm-1 spectral range and assigned based on a comparison to calculated harmonic IR spectra of low-energy isomers. Simulated spectra of the lowest energy structures generally match the experimental spectra, but multiple isomers may contribute to the spectra of the m = 2 series. The identified structures of the oxides (m = 1) correspond to inserting a Ni-O moiety into an Al-O bond of the corresponding (Al2O3)1-3(AlO)+ cluster, yielding either a doubly or triply coordinated Ni2+ center. The m = 2 clusters prefer similar structures in which the additional O atom either is incorporated into a peroxide unit, leaving the oxidation state of the Ni2+ atom unchanged, or forms a biradical comprising a terminal oxygen radical anion Al-O•- and a Ni3+ species. These clusters represent model systems for under-coordinated Ni sites in alumina-supported Ni catalysts and should prove helpful in disentangling the mechanism of selective oxidative dehydrogenation of alkanes by Ni-doped catalysts.

20.
Angew Chem Int Ed Engl ; 60(25): 13788-13792, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33890352

RESUMEN

Catalytic co-conversion of methane with carbon dioxide to produce syngas (2 H2 +2 CO) involves complicated elementary steps and almost all the elementary reactions are performed at the same high temperature conditions in practical thermocatalysis. Here, we demonstrate by mass spectrometric experiments that RhTiO2 - promotes the co-conversion of CH4 and CO2 to free 2 H2 +CO and an adsorbed CO (COads ) at room temperature; the only elementary step that requires the input of external energy is desorption of COads from the RhTiO2 CO- to reform RhTiO2 - . This study not only identifies a promising active species for dry (CO2 ) reforming of methane to syngas, but also emphasizes the importance of temperature control over elementary steps in practical catalysis, which may significantly alleviate the carbon deposition originating from the pyrolysis of methane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA