Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Biophys J ; 53(4): 225-238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613566

RESUMEN

Calibration of titration calorimeters is an ongoing problem, particularly with calorimeters with reaction vessel volumes < 10 mL in which an electrical calibration heater is positioned outside the calorimetric vessel. Consequently, a chemical reaction with a known enthalpy change must be used to accurately calibrate these calorimeters. This work proposes the use of standard solutions of potassium acid phthalate (KHP) titrated into solutions of excess sodium hydroxide (NaOH) or excess tris(hydroxymethyl)aminomethane (TRIS) as standard reactions to determine the collective accuracy of the relevant variables in a determination of the molar enthalpy change for a reaction. KHP is readily available in high purity, weighable for easy preparation of solutions with accurately known concentrations, stable in solution, not compromised by side reactions with common contaminants such as atmospheric CO2, and non-corrosive to materials used in calorimeter construction. Molar enthalpy changes for these reactions were calculated from 0 to 60 °C from reliable literature data for the pKa of KHP, the molar enthalpy change for protonation of TRIS, and the molar enthalpy change for ionization of water. The feasibility of using these reactions as enthalpic standards was tested in several calorimeters; a 50 mL CSC 4300, a 185 µL NanoITC, a 1.4 mL VP-ITC, and a TAM III with 1 mL reaction vessels. The results from the 50 mL CSC 4300, which was accurately calibrated with an electric heater, verified the accuracy of the calculated standard values for the molar enthalpy changes of the proposed reactions.


Asunto(s)
Calorimetría , Hidróxido de Sodio , Trometamina , Hidróxido de Sodio/química , Calibración , Trometamina/química , Temperatura , Estándares de Referencia , Termodinámica
2.
J Pharm Sci ; 113(4): 982-989, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37967652

RESUMEN

Hydrophobic bonding is a phenomenon wherein the adsorption of solutes from aqueous solutions is driven largely by the desire of solvent molecules to interact with each other, thus squeezing out solute molecules onto the adsorbent surface. A novel computational analysis of hydration shell water dynamics was used to study the driving force for the hydrophobic bonding of five small drug molecules to activated carbon. It was demonstrated that the solvation of these drug molecules produced hydration shells of lower density and molecular mobility than bulk water, up to 10.5-14 Å distance. Excellent correlations were found between the simulated water-water hydrogen bonding lifetimes in the hydration shell and the experimental capacity constants of hydrophobic bonding (KHB) obtained from the Two-Mechanism Langmuir-Like Equation. KHB also correlated well with the solute-solvent vdW interaction energies in a manner that could allow future predictions of KHB values from simple simulations. Such correlations were not found with the capacity constant of the well-known enthalpy-driven adsorption. The driving force for hydrophobic bonding has entropic origins due to the elimination of water structuring in the hydration shells. However, unlike a typical entropy-driven process, hydrophobic bonding to activated carbon was also associated with a large exothermic enthalpy change when studied with isoperibol calorimetry.


Asunto(s)
Carbón Orgánico , Simulación de Dinámica Molecular , Entropía , Adsorción , Solventes/química , Agua/química , Soluciones/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno
3.
J Pharm Sci ; 112(1): 100-107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372228

RESUMEN

The reported inconsistencies between the van't Hoff equation and calorimetry hinder the utility of thermodynamics in biochemical and pharmaceutical research. A novel thermodynamic approach is developed herein for ligand adsorption with a focus on the interpretation of calorimetric data in the presence of concurrent proton exchange reactions. Such exchange reactions typically result in a pH-dependence of calorimetric measurements that obscures intrinsic binding enthalpies. It is shown that for the adsorption of phenobarbital to activated carbon, the measured calorimetric enthalpy is a result of three linked acid/base equilibria. A model was established to predict the intrinsic binding enthalpy using 1) the adsorbate's pKa and 2) the adsorbate's enthalpy of protonation. The observed calorimetric enthalpy of binding exhibited both pH and buffer-dependence and was between -5 and -42 kJ/mol. Meanwhile, the predicted intrinsic enthalpy (-25.1 kJ/mol) of binding was in excellent agreement with the measured intrinsic enthalpy (-25.6 kJ/mol). Corrections to the observed calorimetric enthalpies allowed comparisons with enthalpies obtained from the van't Hoff method. It is shown that the predicted intrinsic calorimetric enthalpy agrees well with the van't Hoff enthalpies in instances where observed enthalpies significantly deviated. This treatment is general and is not specific to phenobarbital or activated carbon.


Asunto(s)
Carbón Orgánico , Fenobarbital , Adsorción , Calorimetría/métodos , Termodinámica , Concentración de Iones de Hidrógeno
4.
J Pharm Sci ; 112(1): 91-99, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35605689

RESUMEN

The reported inconsistencies between calorimetry and the van't Hoff equation hinder the utility of thermodynamics in pharmaceutical research. In ligand binding or adsorption assays, it is believed that the van't Hoff equation falls short because of the lack of stoichiometric treatment in the equilibrium constant. A new modified Langmuir-Like equation that accounts for the stoichiometry of solute adsorption and solvent displacement is proposed in this work. The performance of the model was evaluated by studying the adsorption of phenobarbital from aqueous solutions by commercial activated carbon. The amount of water occupying the adsorption sites was estimated by graphical analysis of the 'knee point' of water-vapor adsorption isotherms and was found to correlate well with the relative percentage of hydroxyl and carbonyl surface groups. It was found that one phenobarbital molecule displaces 2-6 water molecules from the adsorption site. It is shown that adsorption enthalpy was not affected by the adjustment for stoichiometry, supporting the notion that the van't Hoff enthalpy is intrinsic and is independent of the stoichiometry of solvent displacement in Langmuir-based binding. The widely reported disparities between the van't Hoff and calorimetric enthalpies are unlikely to be from a stoichiometric origin.


Asunto(s)
Fenobarbital , Agua , Solventes/química , Adsorción , Temperatura , Termodinámica , Calorimetría , Fenobarbital/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA