Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurophysiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958285

RESUMEN

The relative contributions of proprioceptive, vestibular, and visual sensory cues to balance control change depending on their availability and reliability. This sensory reweighting is classically supported by non-linear sway responses to increasing visual surround and/or surface tilt amplitudes. However, recent evidence indicates that visual cues are reweighted based on visual tilt velocity rather than tilt amplitude. Therefore, we designed a study to specifically test the hypothesized velocity dependence of reweighting while expanding on earlier findings for visual reweighting by testing proprioceptive reweighting for standing balance on a tilting surface. Twenty healthy young adults stood with their eyes closed on a toes-up/-down tilting platform. We designed four pseudo-random tilt sequences with either a slow (S) or a fast (F) tilt velocity and different peak-to-peak amplitudes. We used model-based interpretations of measured sway characteristics to estimate the proprioceptive sensory weight (Wprop) within each trial. Additionally, root-mean-square values of measured body centre of mass sway amplitude (RMS) and velocity (RMSv) were calculated for each tilt sequence. Wprop, RMS, and RMSv values varied depending on the stimulus velocity, exhibiting large effects (all Cohen's d's > 1.10). In contrast, we observed no significant differences across stimulus amplitudes for Wprop (Cohen's d's: 0.02-0.16) and, compared to the differences in velocity, there were much smaller changes in RMS and RMSv values (Cohen's d's: 0.05 - 0.91). These results confirmed the hypothesized velocity, rather than amplitude, dependence of sensory reweighting.

2.
J Neurophysiol ; 130(3): 585-595, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37492897

RESUMEN

It has been proposed that sensory force/pressure cues are integrated within a positive feedback mechanism, which accounts for the slow dynamics of human standing behavior and helps align the body with gravity. However, experimental evidence of this mechanism remains scarce. This study tested predictions of a positive torque feedback mechanism for standing balance, specifically that differences between a "reference" torque and actual torque are self-amplified, causing the system to generate additional torque. Seventeen healthy young adults were positioned in an apparatus that permitted normal sway at the ankle until a brake on the apparatus was applied, discreetly "locking" body movement during stance. Once locked, a platform positioned under the apparatus remained in place (0 mm) or slowly translated backward (3 mm or 6 mm), tilting subjects forward. Postural behavior was characterized by two distinct responses: the center of pressure (COP) offset (i.e., change in COP elicited by the surface translation) and the COP drift (i.e., change in COP during the sustained tilt). Model simulations were performed using a linear balance control model containing torque feedback to provide a conceptual basis for the interpretation of experimental results. Holding the body in sustained tilt positions resulted in COP drifting behavior, reflecting attempts of the balance control system to restore an upright position through increases in plantar flexor torque. In line with predictions of positive torque feedback, larger COP offsets led to faster increases in COP over time. These findings provide experimental support for a positive torque feedback mechanism involved in the control of standing balance.NEW & NOTEWORTHY Using model simulations and a novel experimental approach, we tested behavioral predictions of a sensory torque feedback mechanism involved in the control of upright standing. Torque feedback is thought to reduce the effort required to stand and play a functional role in slowly aligning the body with gravity. Our results provide experimental evidence of a torque feedback mechanism and offer new and valuable insights into the sensorimotor control of human balance.


Asunto(s)
Tobillo , Equilibrio Postural , Adulto Joven , Humanos , Retroalimentación , Torque , Movimiento , Retroalimentación Sensorial
3.
Exp Brain Res ; 238(2): 465-476, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31955233

RESUMEN

Studies investigating balance control often use external perturbations to probe the system. These perturbations can be administered as randomized, pseudo-randomized, or predictable sequences. As predictability of a given perturbation can affect balance performance, the way those perturbations are constructed may affect the results of the experiments. In the present study, we hypothesized that subjects are able to adapt to short, rhythmic support surface tilt stimuli, but not to long pseudo-random stimuli. 19 subjects were standing with eyes closed on a servo-controlled platform tilting about the ankle joint axis. Pre and post to the learning intervention, pseudo-random tilt sequences were applied. For the learning phase, a rhythmic and easy-to-memorize 8-s long sequence was applied 75 times, where subjects were instructed to stand as still as possible. Body kinematics were measured and whole body center of mass sway was analyzed. Results showed reduced sway and less forward lean of the body across the learning phase. The sway reductions were similar for stimulus and non-stimulus frequencies. Surprisingly, for the pseudo-random sequences, comparable changes were found from pre- to post-tests. In summary, results confirmed that considerable adaptations exist when exposing subjects to an 8-s long rhythmic perturbation. No indications of predictions of the learning tilt sequence were found, since similar changes were also observed in response to pseudo-random sequences. We conclude that changes in body sway responses following 75 repetitions of an 8-s long rhythmic tilt sequence are due to adaptations in the dynamics of the control mechanism (presumably stiffness).


Asunto(s)
Adaptación Fisiológica/fisiología , Articulación del Tobillo/fisiología , Equilibrio Postural/fisiología , Postura/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino
4.
J Neurophysiol ; 116(2): 272-85, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075544

RESUMEN

Removing or adding sensory cues from one sensory system during standing balance causes a change in the contribution of the remaining sensory systems, a process referred to as sensory reweighting. While reweighting changes have been described in many studies under steady-state conditions, less is known about the temporal dynamics of reweighting following sudden transitions to different sensory conditions. The present study changed sensory conditions by periodically adding or removing visual (lights On/Off) or proprioceptive cues (surface sway referencing On/Off) in 12 young, healthy subjects. Evidence for changes in sensory contributions to balance was obtained by measuring the time course of medial-lateral sway responses to a constant-amplitude 0.56-Hz sinusoidal stimulus, applied as support surface tilt (proprioceptive contribution), as visual scene tilt (visual contribution), or as binaural galvanic vestibular stimulation (vestibular contribution), and by analyzing the time course of sway variability. Sine responses and variability of body sway velocity showed significant changes following transitions and were highly correlated under steady-state conditions. A dependence of steady-state responses on upcoming transitions was observed, suggesting that knowledge of impending changes can influence sensory weighting. Dynamic changes in sway in the period immediately following sensory transitions were very inhomogeneous across sway measures and in different experimental tests. In contrast to steady-state results, sway response and variability measures were not correlated with one another in the dynamic transition period. Several factors influence sway responses following addition or removal of sensory cues, partly instigated by but also obscuring the effects of reweighting dynamics.


Asunto(s)
Señales (Psicología) , Equilibrio Postural/fisiología , Postura/fisiología , Propiocepción/fisiología , Vestíbulo del Laberinto/fisiología , Visión Ocular/fisiología , Adulto , Femenino , Humanos , Masculino , Vestíbulo del Laberinto/inervación , Adulto Joven
5.
J Neurophysiol ; 111(9): 1852-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24501263

RESUMEN

Healthy humans control balance during stance by using an active feedback mechanism that generates corrective torque based on a combination of movement and orientation cues from visual, vestibular, and proprioceptive systems. Previous studies found that the contribution of each of these sensory systems changes depending on perturbations applied during stance and on environmental conditions. The process of adjusting the sensory contributions to balance control is referred to as sensory reweighting. To investigate the dynamics of reweighting for the sensory modalities of vision and proprioception, 14 healthy young subjects were exposed to six different combinations of continuous visual scene and platform tilt stimuli while sway responses were recorded. Stimuli consisted of two components: 1) a pseudorandom component whose amplitude periodically switched between low and high amplitudes and 2) a low-amplitude sinusoidal component whose amplitude remained constant throughout a trial. These two stimuli were mathematically independent of one another and, thus, permitted separate analyses of sway responses to the two components. For all six stimulus combinations, the sway responses to the constant-amplitude sine were influenced by the changing amplitude of the pseudorandom component in a manner consistent with sensory reweighting. Results show clear evidence of intra- and intermodality reweighting. Reweighting dynamics were asymmetric, with slower reweighting dynamics following a high-to-low transition in the pseudorandom stimulus amplitude compared with low-to-high amplitude shifts, and were also slower for inter- compared with intramodality reweighting.


Asunto(s)
Retroalimentación Fisiológica , Equilibrio Postural/fisiología , Propiocepción , Visión Ocular , Adulto , Femenino , Humanos , Masculino
6.
Exp Brain Res ; 228(3): 297-304, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23686151

RESUMEN

Vision helps humans in controlling bipedal stance, interacting mainly with vestibular and proprioceptive cues. This study investigates how postural compensation of support surface tilt is compromised by selectively reducing visual velocity cues by stroboscopic illumination of a stationary visual scene. Healthy adult subjects were presented with pseudorandom tilt sequences in the sagittal plane (tilt frequency range 0.017-2.2 Hz; velocity amplitude spectrum constant up to a frequency of 0.6 Hz, angular displacement amplitude spectrum increasing with decreasing frequencies). Center of mass (COM) sway responses were recorded for stroboscopic illuminations at 48, 32, 16, 8, and 4 Hz, as well as under continuous illumination and with eyes closed. With strobe duration (5 ms) and mean luminance (1 lx) kept constant, visual acuity and perceived brightness remained constant and the visual scene was perceived as stationary. Yet, tilt-evoked COM excursions increased with decreasing strobe frequency in a graded way, with largest effects occurring at tilt frequencies where large tilt velocities coincided with small displacements. In addition, COM excursions were reduced at the lowest strobe frequency compared to eyes closed, with the largest effect occurring at tilt frequencies where tilt displacements were large. We conclude that two mechanisms exist, a velocity mechanism that deals with tilt compensation and is foremost affected by the stroboscopic illumination and a displacement mechanism. This compares favorably to previous findings that, transferred to a stance control model, suggest a velocity mechanism for tilt compensation and a position mechanism for gravity compensation.


Asunto(s)
Equilibrio Postural/fisiología , Postura/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adaptación Fisiológica/fisiología , Adulto , Señales (Psicología) , Femenino , Humanos , Masculino , Estimulación Luminosa
7.
Sci Rep ; 13(1): 2594, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788259

RESUMEN

Sensory perturbations are a valuable tool to assess sensory integration mechanisms underlying balance. Implemented as systems-identification approaches, they can be used to quantitatively assess balance deficits and separate underlying causes. However, the experiments require controlled perturbations and sophisticated modeling and optimization techniques. Here we propose and validate a virtual reality implementation of moving visual scene experiments together with model-based interpretations of the results. The approach simplifies the experimental implementation and offers a platform to implement standardized analysis routines. Sway of 14 healthy young subjects wearing a virtual reality head-mounted display was measured. Subjects viewed a virtual room or a screen inside the room, which were both moved during a series of sinusoidal or pseudo-random room or screen tilt sequences recorded on two days. In a between-subject comparison of 10 [Formula: see text] 6 min long pseudo-random sequences, each applied at 5 amplitudes, our results showed no difference to a real-world moving screen experiment from the literature. We used the independent-channel model to interpret our data, which provides a direct estimate of the visual contribution to balance, together with parameters characterizing the dynamics of the feedback system. Reliability estimates of single subject parameters from six repetitions of a 6 [Formula: see text] 20-s pseudo-random sequence showed poor test-retest agreement. Estimated parameters show excellent reliability when averaging across three repetitions within each day and comparing across days (Intra-class correlation; ICC 0.7-0.9 for visual weight, time delay and feedback gain). Sway responses strongly depended on the visual scene, where the high-contrast, abstract screen evoked larger sway as compared to the photo-realistic room. In conclusion, our proposed virtual reality approach allows researchers to reliably assess balance control dynamics including the visual contribution to balance with minimal implementation effort.


Asunto(s)
Equilibrio Postural , Realidad Virtual , Humanos , Reproducibilidad de los Resultados , Equilibrio Postural/fisiología , Retroalimentación , Voluntarios Sanos
8.
PLoS One ; 15(10): e0241479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119679

RESUMEN

Virtual reality (VR) technology is commonly used in balance research due to its ability to simulate real world experiences under controlled experimental conditions. However, several studies reported considerable differences in balance behavior in real world environments as compared to virtual environments presented in a head mounted display. Most of these studies were conducted more than a decade ago, at a time when VR was still struggling with major technical limitations (delays, limited field-of-view, etc.). In the meantime, VR technology has progressed considerably, enhancing its capacity to induce the feeling of presence and behavioural realism. In this study, we addressed two questions: Has VR technology now reached a point where balance is similar in real and virtual environments? And does the integration of visual cues for balance depend on the subjective experience of presence? We used a state-of-the-art head mounted VR system and a custom-made balance platform to compare balance when viewing (1) a real-world environment, (2) a photo-realistic virtual copy of the real-world environment, (3) an abstract virtual environment consisting of only spheres and bars ('low presence' VR condition), and, as reference, (4) a condition with eyes closed. Body sway of ten participants was measured in three different support surface conditions: (A) quiet stance, (B) stance on a sway referenced surface, and (C) surface tilting following a pseudo-random sequence. A 2-level repeated measures ANOVA and PostHoc analyses revealed no significant differences in body sway between viewing the real world environment and the photo-realistic virtual copy. In contrast, body sway was increased in the 'low presence' abstract scene and further increased with eyes closed. Results were consistent across platform conditions. Our results support the hypothesis that state of the art VR reached a point of behavioural realism in which balance in photo-realistic VR is similar to balance in a real environment. Presence was lower in the abstract virtual condition as compared to the photo-realistic condition as measured by the IPQ presence questionnaire. Thus, our results indicate that spatial presence may be a moderating factor, but further research is required to confirm this notion. We conceive that virtual reality is a valid tool for balance research, but that the properties of the virtual environment affects results.


Asunto(s)
Movimiento/fisiología , Equilibrio Postural , Investigación , Realidad Virtual , Adulto , Calibración , Femenino , Humanos , Masculino
9.
PLoS One ; 13(6): e0197316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29874252

RESUMEN

In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.


Asunto(s)
Dedos , Modelos Biológicos , Equilibrio Postural/fisiología , Percepción del Tacto/fisiología , Adulto , Femenino , Humanos , Masculino
10.
Front Comput Neurosci ; 12: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29615886

RESUMEN

The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.

11.
Hum Mov Sci ; 41: 147-64, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25816794

RESUMEN

Visual position and velocity cues improve human standing balance, reducing sway responses to external disturbances and sway variability. Previous work suggested that human balancing is based on sensory estimates of external disturbances and their compensation using feedback mechanisms (Disturbance Estimation and Compensation, DEC model). This study investigates the visual effects on sway responses to pseudo-random support surface tilts, assuming that improvements result from lowering the velocity threshold in a tilt estimate and the position threshold in an estimate of the gravity disturbance. Center of mass (COM) sway was measured with four different tilt amplitudes, separating the effect of visual cues across the conditions 'Eyes closed' (no visual cues), '4Hz stroboscopic illumination' (visual position cues), and 'continuous illumination' (visual position and velocity cues). In a model based approach, parameters of disturbance estimators were identified. The model reproduced experimental results and showed a specific reduction of the position and velocity threshold when adding visual position and velocity cues, respectively. Sway variability was analyzed to explore a hypothesized relation between estimator thresholds and internal noise. Results suggest that adding the visual cues reduces the contribution of vestibular noise, thereby reducing sway variability and allowing for lower thresholds, which improves the disturbance compensation.


Asunto(s)
Equilibrio Postural , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Adulto , Fenómenos Biomecánicos , Simulación por Computador , Señales (Psicología) , Diseño de Equipo , Retroalimentación , Femenino , Voluntarios Sanos , Humanos , Masculino , Estimulación Luminosa , Postura/fisiología , Vestíbulo del Laberinto , Visión Ocular , Percepción Visual/fisiología
12.
Hum Mov Sci ; 37: 123-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25150802

RESUMEN

Human sensorimotor control involves inter-segmental coordination to cope with the complexity of a multi-segment system. The combined activation of hip and ankle muscles during upright stance represents the hip-ankle coordination. This study postulates that the coordination emerges from interactions on the sensory levels in the feedback control. The hypothesis was tested in a model-based approach that compared human experimental data with model simulations. Seven subjects were standing with eyes closed on an anterior-posterior tilting motion platform. Postural responses in terms of angular excursions of trunk and legs with respect to vertical were measured and characterized using spectral analysis. The presented control model consists of separate feedback modules for the hip and ankle joints, which exchange sensory information with each other. The feedback modules utilize sensor-derived disturbance estimates rather than 'raw' sensory signals. The comparison of the human data with the simulation data revealed close correspondence, suggesting that the model captures important aspects of the human sensory feedback control. For verification, the model was re-embodied in a humanoid robot that was tested in the human laboratory. The findings show that the hip-ankle coordination can be explained by interactions between the feedback control modules of the hip and ankle joints.


Asunto(s)
Articulación del Tobillo/fisiología , Tobillo/fisiología , Retroalimentación Fisiológica , Cadera/fisiología , Adulto , Antropometría , Simulación por Computador , Femenino , Articulación de la Cadera/fisiología , Humanos , Articulación de la Rodilla , Pierna/fisiología , Masculino , Movimiento , Equilibrio Postural , Postura , Reproducibilidad de los Resultados , Robótica
13.
J Obes ; 2014: 321701, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25089207

RESUMEN

INTRODUCTION: Physical activity (PA) in preschoolers is vital to protect against obesity but is influenced by different early-life factors. The present study investigated the impact of different preschool programs and selected family factors on preschoolers' PA in different countries in an explorative way. METHODS: The PA of 114 children (age = 5.3 ± 0.65 years) attending different preschool settings in four cities of the trinational Upper Rhine region (Freiburg, Landau/Germany, Basel/Switzerland, and Strasbourg/France) was measured by direct accelerometry. Anthropometrical and family-related data were obtained. Timetables of preschools were analyzed. RESULTS: Comparing the preschool settings, children from Strasbourg and Landau were significantly more passive than children from Basel and Freiburg (P < .01). With regard to the family context as an important early-life factor, a higher number of children in a family along with the mother's and child's anthropometrical status are predictors of engagement in PA. CONCLUSION: More open preschool systems such as those in Basel, Freiburg, and Landau do not lead to more PA "per se" compared to the highly regimented desk-based system in France. Preliminaries such as special training and the number of caregivers might be necessary elements to enhance PA. In family contexts, targeted PA interventions for special groups should be more focused in the future.


Asunto(s)
Ejercicio Físico , Obesidad , Instituciones Académicas , Acelerometría , Niño , Preescolar , Femenino , Alemania , Humanos , Masculino , Obesidad/etiología , Obesidad/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA