Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(4): 3136-3143, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36621838

RESUMEN

The molecular mobility of acetonitrile intercalated into the inter-plane space of graphite oxide was studied using the spin probe technique. It was revealed that two types of intercalated substance - liquid-like and solid-like - are simultaneously present in between the oxidized graphene planes, and their ratio depends on temperature. The micro-viscosity of liquid-like intercalated acetonitrile was found to be higher than that of bulk acetonitrile and depends on the amount of intercalated liquid.

2.
Phys Chem Chem Phys ; 25(37): 25720-25727, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37721717

RESUMEN

Membranes based on graphite oxide (GO) are promising materials for the separation of polar liquids and gases. Understanding the properties of solvents immersed in GO is important for the development of various technological applications. Here, the molecular motions of the TEMPO nitroxide spin probe in acetonitrile intercalated into the GO inter-plane space were studied using electron paramagnetic resonance (EPR), including its pulsed version, and electron spin echo (ESE). For a sample containing 75% acetonitrile relative to equilibrium sorption at room temperature, ESE-detected stochastic librations were observed for TEMPO molecules above 135 K. Since these librations are an inherent property of molecular glasses, this fact indicates that intercalated acetonitrile forms a two-dimensional glass state. Above 225 K, an acceleration of stochastic librations was observed, indicating the manifestation of a glass-like dynamical cross-over. Continuous wave (CW) EPR spectra of TEMPO showed the absence of overall tumbling motions in the entire investigated temperature range of up to 340 K, indicating that the intercalated acetonitrile does not behave as a bulk liquid (the melting point of acetonitrile is 229 K). Dynamical librations of TEMPO molecules detected by CW EPR were found to accelerate above 240 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA