Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 74: 655-671, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32689914

RESUMEN

Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.


Asunto(s)
Bacterias/genética , Bacterias/patogenicidad , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Evasión Inmune , Metilación de ADN , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , Humanos , Regulón , Virulencia
2.
Nucleic Acids Res ; 51(7): 3240-3260, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840716

RESUMEN

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.


Asunto(s)
Actinobacillus pleuropneumoniae , Variación de la Fase , Animales , Porcinos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Metiltransferasas/genética , Metiltransferasas/metabolismo , Bacterias/genética , ADN/metabolismo
3.
Nucleic Acids Res ; 50(20): e119, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36099417

RESUMEN

Paraspeckles are ribonucleoprotein granules assembled by NEAT1_2 lncRNA, an isoform of Nuclear Paraspeckle Assembly Transcript 1 (NEAT1). Dysregulation of NEAT1_2/paraspeckles has been linked to multiple human diseases making them an attractive drug target. However currently NEAT1_2/paraspeckle-focused translational research and drug discovery are hindered by a limited toolkit. To fill this gap, we developed and validated a set of tools for the identification of NEAT1_2 binders and modulators comprised of biochemical and cell-based assays. The NEAT1_2 triple helix stability element was utilized as the target in the biochemical assays, and the cellular assay ('ParaQuant') was based on high-content imaging of NEAT1_2 in fixed cells. As a proof of principle, these assays were used to screen a 1,200-compound FDA-approved drug library and a 170-compound kinase inhibitor library and to confirm the screening hits. The assays are simple to establish, use only commercially-available reagents and are scalable for higher throughput. In particular, ParaQuant is a cost-efficient assay suitable for any cells growing in adherent culture and amenable to multiplexing. Using ParaQuant, we identified dual PI3K/mTOR inhibitors as potent negative modulators of paraspeckles. The tools we describe herein should boost paraspeckle studies and help guide the search, validation and optimization of NEAT1_2/paraspeckle-targeted small molecules.


Asunto(s)
Núcleo Celular , Paraspeckles , ARN Largo no Codificante , Humanos , Núcleo Celular/genética , Paraspeckles/efectos de los fármacos , Paraspeckles/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/química , Inhibidores de Proteínas Quinasas/farmacología , Descubrimiento de Drogas
4.
Infect Immun ; 90(4): e0056521, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35258316

RESUMEN

Lav is an autotransporter protein found in pathogenic Haemophilus and Neisseria species. Lav in nontypeable Haemophilus influenzae (NTHi) is phase-variable: the gene reversibly switches ON-OFF via changes in length of a locus-located GCAA(n) simple DNA sequence repeat tract. The expression status of lav was examined in carriage and invasive collections of NTHi, where it was predominantly not expressed (OFF). Phenotypic study showed lav expression (ON) results in increased adherence to human lung cells and denser biofilm formation. A survey of Haemophilus species genome sequences showed lav is present in ∼60% of NTHi strains, but lav is not present in most typeable H. influenzae strains. Sequence analysis revealed a total of five distinct variants of the Lav passenger domain present in Haemophilus spp., with these five variants showing a distinct lineage distribution. Determining the role of Lav in NTHi will help understand the role of this protein during distinct pathologies.


Asunto(s)
Infecciones por Haemophilus , Haemophilus influenzae , Biopelículas , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Humanos , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo
5.
Microbiology (Reading) ; 168(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35316172

RESUMEN

N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animales , Bacterias/genética , Bacterias/metabolismo , Humanos , Mamíferos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa , Ácidos Siálicos/metabolismo , Factores de Virulencia
6.
FASEB J ; 34(1): 1038-1051, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914596

RESUMEN

Over recent years several examples of randomly switching methyltransferases, associated with Type III restriction-modification (R-M) systems, have been described in pathogenic bacteria. In every case examined, changes in simple DNA sequence repeats result in variable methyltransferase expression and result in global changes in gene expression, and differentiation of the bacterial cell into distinct phenotypes. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria, with 17.4% of Type III R-M system containing simple DNA sequence repeats. A distinct, recombination-driven random switching system has also been described in Streptococci in Type I R-M systems that also regulate gene expression. Here, we interrogate the most extensive and well-curated database of R-M systems, REBASE, by searching for all possible simple DNA sequence repeats in the hsdRMS genes that encode Type I R-M systems. We report that 7.9% of hsdS, 2% of hsdM, and of 4.3% of hsdR genes contain simple sequence repeats that are capable of mediating phase variation. Phase variation of both hsdM and hsdS genes will lead to differential methyltransferase expression or specificity, and thereby the potential to control phasevarions. These data suggest that in addition to well characterized phasevarions controlled by Type III mod genes, and the previously described Streptococcal Type I R-M systems that switch via recombination, approximately 10% of all Type I R-M systems surveyed herein have independently evolved the ability to randomly switch expression via simple DNA sequence repeats.


Asunto(s)
Epigénesis Genética , Repeticiones de Microsatélite , Regulón , Proteínas Bacterianas/genética , Biología Computacional , ADN/análisis , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Fusobacterium nucleatum , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mannheimia haemolytica , Metiltransferasas/metabolismo , Fenotipo , Pseudomonas aeruginosa , Salmonella enterica
7.
Br J Anaesth ; 126(3): 674-683, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388140

RESUMEN

BACKGROUND: Multiple cognitive and psychiatric disorders are associated with an increased tonic inhibitory conductance that is generated by α5 subunit-containing γ-aminobutyric acid type A (α5 GABAA) receptors. Negative allosteric modulators that inhibit α5 GABAA receptors (α5-NAMs) are being developed as treatments for these disorders. The effects of α5-NAMs have been studied on recombinant GABAA receptors expressed in non-neuronal cells; however, no study has compared drug effects on the tonic conductance generated by native GABAA receptors in neurones, which was the goal of this study. METHODS: The effects of five α5-NAMs (basmisanil, Ono-160, L-655,708, α5IA, and MRK-016) on tonic current evoked by a low concentration of GABA were studied using whole-cell recordings in cultured mouse hippocampal neurones. Drug effects on current evoked by a saturating concentration of GABA and on miniature inhibitory postsynaptic currents (mIPSCs) were also examined. RESULTS: The α5-NAMs caused a concentration-dependent decrease in tonic current. The potencies varied as the inhibitory concentration for 50% inhibition (IC50) of basmisanil (127 nM) was significantly higher than those of the other compounds (0.4-0.8 nM). In contrast, the maximal efficacies of the drugs were similar (35.5-51.3% inhibition). The α5-NAMs did not modify current evoked by a saturating GABA concentration or mIPSCs. CONCLUSIONS: Basmisanil was markedly less potent than the other α5-NAMs, an unexpected result based on studies of recombinant α5 GABAA receptors. Studying the effects of α5 GABAA receptor-selective drugs on the tonic inhibitory current in neurones could inform the selection of compounds for future clinical trials.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Antagonistas de Receptores de GABA-A/farmacología , Hipocampo/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Regulación Alostérica , Animales , Células Cultivadas , Cognición/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Técnicas de Placa-Clamp
8.
Nucleic Acids Res ; 46(7): 3532-3542, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554328

RESUMEN

Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions - phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine DNA-methyltransferases. We report that 17.4% of Type III mod genes (662/3805) contain simple sequence repeats. Of these, only one-fifth have been previously identified. The newly discovered examples are widely distributed and include many examples in opportunistic pathogens as well as in environmental species. In many cases, multiple phasevarions exist in one genome, with examples of up to 4 independent phasevarions in some species. We found several new types of phase-variable mod genes, including the first example of a phase-variable methyltransferase in pathogenic Escherichia coli. Phasevarions are a common epigenetic regulation contingency strategy used by both pathogenic and non-pathogenic bacteria.


Asunto(s)
Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/genética , Epigénesis Genética , Bases de Datos Genéticas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Genoma Bacteriano/genética , Repeticiones de Microsatélite/genética
9.
Nucleic Acids Res ; 46(21): 11466-11476, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30304532

RESUMEN

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Metiltransferasas/genética , Regulón , Streptococcus suis/enzimología , Alelos , Animales , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , ADN Bacteriano/metabolismo , Epigénesis Genética , Escherichia coli , Variación Genética , Genoma Bacteriano , Repeticiones de Microsatélite , Oligonucleótidos/genética , Fenotipo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/genética , Porcinos
10.
Infect Immun ; 87(5)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833337

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a major human pathogen, responsible for several acute and chronic infections of the respiratory tract. The incidence of invasive infections caused by NTHi is increasing worldwide. NTHi is able to colonize the nasopharynx asymptomatically, and the exact change(s) responsible for transition from benign carriage to overt disease is not understood. We have previously reported that phase variation (the rapid and reversible ON-OFF switching of gene expression) of particular lipooligosaccharide (LOS) glycosyltransferases occurs during transition from colonizing the nasopharynx to invading the middle ear. Variation in the structure of the LOS is dependent on the ON/OFF expression status of each of the glycosyltransferases responsible for LOS biosynthesis. In this study, we surveyed a collection of invasive NTHi isolates for ON/OFF expression status of seven phase-variable LOS glycosyltransferases. We report that the expression state of the LOS biosynthetic genes oafA ON and lic2A OFF shows a correlation with invasive NTHi isolates. We hypothesize that these gene expression changes contribute to the invasive potential of NTHi. OafA expression, which is responsible for the addition of an O-acetyl group onto the LOS, has been shown to impart a phenotype of increased serum resistance and may serve as a marker for invasive NTHi.


Asunto(s)
Infecciones por Haemophilus/genética , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Haemophilus influenzae/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/genética , Lipopolisacáridos/inmunología , Infecciones por Haemophilus/patología , Haemophilus influenzae/genética , Interacciones Huésped-Patógeno/genética , Humanos , Queensland
11.
Microbiology (Reading) ; 165(9): 917-928, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30994440

RESUMEN

Phase-variable DNA methyltransferases control the expression of multiple genes via epigenetic mechanisms in a wide variety of bacterial species. These systems are called phasevarions, for phase-variable regulons. Phasevarions regulate genes involved in pathogenesis, host adaptation and antibiotic resistance. Many human-adapted bacterial pathogens contain phasevarions. These include leading causes of morbidity and mortality worldwide, such as non-typeable Haemophilus influenzae, Streptococcus pneumoniae and Neisseria spp. Phase-variable methyltransferases and phasevarions have also been discovered in environmental organisms and veterinary pathogens. The existence of many different examples suggests that phasevarions have evolved multiple times as a contingency strategy in the bacterial domain, controlling phenotypes that are important in adapting to environmental change. Many of the organisms that contain phasevarions have existing or emerging drug resistance. Vaccines may therefore represent the best and most cost-effective tool to prevent disease caused by these organisms. However, many phasevarions also control the expression of current and putative vaccine candidates; variable expression of antigens could lead to immune evasion, meaning that vaccines designed using these targets become ineffective. It is therefore essential to characterize phasevarions in order to determine an organism's stably expressed antigenic repertoire, and rationally design broadly effective vaccines.


Asunto(s)
Bacterias , Enzimas de Restricción-Modificación del ADN/genética , Epigénesis Genética , Metiltransferasas , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/patogenicidad , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/transmisión , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas de Restricción-Modificación del ADN/metabolismo , Resistencia a Medicamentos/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mycoplasma/genética , Mycoplasma/patogenicidad , Neisseria/genética , Neisseria/patogenicidad , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidad
12.
Biochem Soc Trans ; 47(4): 1131-1141, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31341035

RESUMEN

Phase-variation of genes is defined as the rapid and reversible switching of expression - either ON-OFF switching or the expression of multiple allelic variants. Switching of expression can be achieved by a number of different mechanisms. Phase-variable genes typically encode bacterial surface structures, such as adhesins, pili, and lipooligosaccharide, and provide an extra contingency strategy in small-genome pathogens that may lack the plethora of 'sense-and-respond' gene regulation systems found in other organisms. Many bacterial pathogens also encode phase-variable DNA methyltransferases that control the expression of multiple genes in systems called phasevarions (phase-variable regulons). The presence of phase-variable genes allows a population of bacteria to generate a number of phenotypic variants, some of which may be better suited to either colonising certain host niches, surviving a particular environmental condition and/or evading an immune response. The presence of phase-variable genes complicates the determination of an organism's stably expressed antigenic repertoire; many phase-variable genes are highly immunogenic, and so would be ideal vaccine candidates, but unstable expression due to phase-variation may allow vaccine escape. This review will summarise our current understanding of phase-variable genes that switch expression by a variety of mechanisms, and describe their role in disease and pathobiology.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Bacterias/genética , Metilasas de Modificación del ADN/metabolismo , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos
13.
BMC Microbiol ; 19(1): 276, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818247

RESUMEN

BACKGROUND: Moraxella catarrhalis is a leading cause of otitis media (OM) and chronic obstructive pulmonary disease (COPD). M. catarrhalis contains a Type III DNA adenine methyltransferase (ModM) that is phase-variably expressed (i.e., its expression is subject to random, reversible ON/OFF switching). ModM has six target recognition domain alleles (modM1-6), and we have previously shown that modM2 is the predominant allele, while modM3 is associated with OM. Phase-variable DNA methyltransferases mediate epigenetic regulation and modulate pathogenesis in several bacteria. ModM2 of M. catarrhalis regulates the expression of a phasevarion containing genes important for colonization and infection. Here we describe the phase-variable expression of modM3, the ModM3 methylation site and the suite of genes regulated within the ModM3 phasevarion. RESULTS: Phase-variable expression of modM3, mediated by variation in length of a 5'-(CAAC)n-3' tetranucleotide repeat tract in the open reading frame was demonstrated in M. catarrhalis strain CCRI-195ME with GeneScan fragment length analysis and western immunoblot. We determined that ModM3 is an active N6-adenine methyltransferase that methylates the sequence 5'-ACm6ATC-3'. Methylation was detected at all 4446 5'-ACATC-3' sites in the genome when ModM3 is expressed. RNASeq analysis identified 31 genes that are differentially expressed between modM3 ON and OFF variants, including five genes that are involved in the response to oxidative and nitrosative stress, with potential roles in biofilm formation and survival in anaerobic environments. An in vivo chinchilla (Chinchilla lanigera) model of otitis media demonstrated that transbullar challenge with the modM3 OFF variant resulted in an increased middle ear bacterial load compared to a modM3 ON variant. In addition, co-infection experiments with NTHi and M. catarrhalis modM3 ON or modM3 OFF variants revealed that phase variation of modM3 altered survival of NTHi in the middle ear during early and late stage infection. CONCLUSIONS: Phase variation of ModM3 epigenetically regulates the expression of a phasevarion containing multiple genes that are potentially important in the progression of otitis media.


Asunto(s)
Viabilidad Microbiana/genética , Moraxella catarrhalis/enzimología , Moraxella catarrhalis/genética , Otitis Media/microbiología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Animales , Proteínas Bacterianas/genética , Chinchilla , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Masculino , Infecciones por Moraxellaceae/microbiología
14.
Biochem Biophys Res Commun ; 503(2): 1103-1107, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29944882

RESUMEN

Non-typeable Haemophilus influenzae (NTHi) is a human-adapted bacterial pathogen, responsible for infections of the human respiratory tract. This pathogen expresses a range of adhesins that mediate binding to host cells. Most NTHi strains can express the related adhesins HMW1 and HMW2. Expression of HMW proteins is phase-variable: changes in the length of simple-sequence repeats located in the encoding genes promoter regions results in changes in expression levels of these adhesins. HMW expression is also controlled by epigenetic regulation. HMW1 has been previously demonstrated to bind α 2-3 sialyl-lactosamine, but affinity of this interaction has not been investigated. The host receptor(s) for HMW2 is currently unknown. We hypothesized that host glycans may act as receptors for HMW2-mediated adherence. We examined the glycan-binding activity of HMW2 using glycan arrays and Surface Plasmon Resonance (SPR). These studies demonstrate that HMW2 binds 2-6 linked N-acetylneuraminic acid with high affinity. HMW2 did not bind glycan structures containing the non-human form of sialic acid, N-glycolylneuraminic acid. Thus, the specificity of HMW1 and HMW2 have complementary lectin activities that may allow NTHi distinct niches in the human host.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Infecciones por Haemophilus/metabolismo , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/metabolismo , Lectinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Humanos , Polisacáridos/metabolismo , Unión Proteica
15.
J Pharmacol Exp Ther ; 366(1): 145-157, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720564

RESUMEN

In nonhuman primates we tested a new set of behavioral categories for observable sedative effects using pediatric anesthesiology classifications as a basis. Using quantitative behavioral observation techniques in rhesus monkeys, we examined the effects of alprazolam and diazepam (nonselective benzodiazepines), zolpidem (preferential binding to α1 subunit-containing GABAA receptors), HZ-166 (8-ethynyl-6-(2'-pyridine)-4H-2,5,10b-triaza-benzo[e]azulene-3-carboxylic acid ethyl ester; functionally selective with relatively high intrinsic efficacy for α2 and α3 subunit-containing GABAA receptors), MRK-696 [7-cyclobutyl-6-(2-methyl-2H-1,2,4-triazol-2-ylmethoxy)-3-(2-flurophenyl)-1,2,4-triazolo(4,3-b)pyridazine; no selectivity but partial intrinsic activity], and TPA023B 6,2'-diflouro-5'-[3-(1-hydroxy-1-methylethyl)imidazo[1,2-b][1,2,4]triazin-7-yl]biphenyl-2-carbonitrile; partial intrinsic efficacy and selectivity for α2, α3, α5 subunit-containing GABAA receptors]. We further examined the role of α1 subunit-containing GABAA receptors in benzodiazepine-induced sedative effects by pretreating animals with the α1 subunit-preferring antagonist ß-carboline-3-carboxylate-t-butyl ester (ßCCT). Increasing doses of alprazolam and diazepam resulted in the emergence of observable ataxia, rest/sleep posture, and moderate and deep sedation. In contrast, zolpidem engendered dose-dependent observable ataxia and deep sedation but not rest/sleep posture or moderate sedation, and HZ-166 and TPA023 induced primarily rest/sleep posture. MRK-696 induced rest/sleep posture and observable ataxia. Zolpidem, but no other compounds, significantly increased tactile/oral exploration. The sedative effects engendered by alprazolam, diazepam, and zolpidem generally were attenuated by ßCCT pretreatments, whereas rest/sleep posture and suppression of tactile/oral exploration were insensitive to ßCCT administration. These data suggest that α2/3-containing GABAA receptor subtypes unexpectedly may mediate a mild form of sedation (rest/sleep posture), whereas α1-containing GABAA receptors may play a role in moderate/deep sedation.


Asunto(s)
Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Receptores de GABA-A/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Femenino , Macaca mulatta , Masculino
16.
Proc Natl Acad Sci U S A ; 112(19): E2543-52, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918415

RESUMEN

The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential.


Asunto(s)
Sitio Alostérico , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica , Animales , Carbono/química , Cristalografía por Rayos X , Humanos , Canales Iónicos Activados por Ligandos/metabolismo , Ligandos , Modelos Moleculares , Mutagénesis , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Nicotínicos/metabolismo , Resonancia por Plasmón de Superficie , Torpedo , Difracción de Rayos X , Xenopus
17.
Adv Synth Catal ; 359(18): 3261-3269, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30100832

RESUMEN

5-Phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-ones react under palladium- and visible light photoredox catalysis, in refluxing methanol, with aryldiazonium salts to afford the respective 5-(2-arylphenyl) analogues. With 2- or 4-fluorobenzenediazonium derivatives, both fluoroaryl- and methoxyaryl- products were obtained, the latter resulting from a SNAr on the fluorobenzenediazonium salt ("nuisance effect"). A computational DFT analysis of the palladium-catalysed and the palladium/ruthenium-photocalysed mechanism for the functionalization of benzodiazepines indicated that, in the presence of the photocatalyst, the reaction proceeds via a low-energy SET pathway avoiding the high-energy oxidative addition step in the palladium-only catalysed reaction pathway.

18.
Biochem J ; 473(13): 1869-79, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27099339

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Riboflavina/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Hidrolasas Diéster Fosfóricas/química , Unión Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Riboflavina/análogos & derivados , Riboflavina/farmacología , Temperatura
19.
J Infect Dis ; 214(5): 817-24, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288538

RESUMEN

Several human-adapted bacterial pathogens use a phasevarion (ie, a phase-variable regulon) to rapidly and reversibly regulate the expression of many genes, which include known virulence factors, yet the influence of phasevarion-mediated regulation in pathogenesis remains poorly understood. Here we examine the impact of the nontypeable Haemophilus influenzae (NTHI) ModA2 phasevarion on pathogenesis and disease severity in a chinchilla model of experimental otitis media. Chinchillas were challenged with NTHI variant populations that were either inoculated ON and remained ON, inoculated OFF and shifted ON, or inoculated OFF and remained OFF, within the middle ear. We show that populations that shift from OFF to ON within the middle ear induce significantly greater disease severity than populations that are unable to shift. These observations support the importance of phasevarion switching in NTHI pathogenesis and the necessity to considered phasevarion regulation when developing methods to treat and prevent infection.


Asunto(s)
Variación Antigénica , Antígenos Bacterianos/inmunología , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/patología , Haemophilus influenzae/patogenicidad , Otitis Media/microbiología , Otitis Media/patología , Animales , Antígenos Bacterianos/genética , Chinchilla , Estudios de Cohortes , Modelos Animales de Enfermedad , Índice de Severidad de la Enfermedad
20.
Trends Biochem Sci ; 37(2): 74-84, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22118811

RESUMEN

Structure-specific 5'-nucleases form a superfamily of evolutionarily conserved phosphodiesterases that catalyse a precise incision of a diverse range of DNA and RNA substrates in a sequence-independent manner. Superfamily members, such as flap endonucleases, exonuclease 1, DNA repair protein XPG, endonuclease GEN1 and the 5'-3'-exoribonucleases, play key roles in many cellular processes such as DNA replication and repair, recombination, transcription, RNA turnover and RNA interference. In this review, we discuss recent results that highlight the conserved architectures and active sites of the structure-specific 5'-nucleases. Despite substrate diversity, a common gating mechanism for sequence-independent substrate recognition and incision emerges, whereby double nucleotide unpairing of substrates is required to access the active site.


Asunto(s)
Endonucleasas de ADN Solapado/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , ADN/química , ADN/metabolismo , Reparación del ADN , Endonucleasas/química , Endonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Interferencia de ARN , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA