Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9605, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311766

RESUMEN

Autism spectrum disorder (ASD) presents a neurological and developmental disorder that has an impact on the social and cognitive skills of children causing repetitive behaviours, restricted interests, communication problems and difficulty in social interaction. Early diagnosis of ASD can prevent from its severity and prolonged effects. Federated learning (FL) is one of the most recent techniques that can be applied for accurate ASD diagnoses in early stages or prevention of its long-term effects. In this article, FL technique has been uniquely applied for autism detection by training two different ML classifiers including logistic regression and support vector machine locally for classification of ASD factors and detection of ASD in children and adults. Due to FL, results obtained from these classifiers have been transmitted to central server where meta classifier is trained to determine which approach is most accurate in the detection of ASD in children and adults. Four different ASD patient datasets, each containing more than 600 records of effected children and adults have been obtained from different repository for features extraction. The proposed model predicted ASD with 98% accuracy (in children) and 81% accuracy (in adults).


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Adulto , Niño , Trastorno del Espectro Autista/diagnóstico , Aprendizaje Automático , Interacción Social , Máquina de Vectores de Soporte
2.
Comput Intell Neurosci ; 2022: 2668567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458232

RESUMEN

Deep learning is widely used for the classification of images that have various attributes. Image data are used to extract colour, texture, form, and local features. These features are combined in feature-level image fusion to create a merged remote sensing image. A trained depth belief network (DBN) processes and divides fusion images, while a Softmax classifier determines the land type. As tested, the proposed approach can categorise all types of land. Traditional methods of detecting distant sensing photographs have limitations that can be overcome by using convolutional neural networks (CNN). Traditional techniques are incapable of combining deep learning elements while doing badly in classification. After PCA decreases data dimensionality, deep learning is applied to generate effective features that employ deep learning after PCA has reduced the dimensionality of the data. Principal component analysis is commonly used because of its effectiveness in attaining linear dimension reduction. It may be used on its own or as a starting point for further study into various different dimensionality reduction approaches. Data can be altered by remapping onto a new set of orthogonal axes using a process known as projection-based principal component analysis. Following remote sensing of land resources, the pictures were classified using a support vector machine. Euroset satellite images are used to assess the suggested approach. Accuracy and kappa have both increased. It was accurate and within 95.83 % of the planned figures. The classification findings' kappa value and reasoning time were 95.87 % and 128 milliseconds, respectively. Both the model's performance and the classification effect are excellent.


Asunto(s)
Aprendizaje Profundo , Tecnología de Sensores Remotos , Redes Neurales de la Computación , Análisis de Componente Principal , Solución de Problemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA