Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Immunol ; 265: 110279, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878807

RESUMEN

Systemic lupus erythematosus is an autoimmune disease that results in immune-mediated damage to kidneys and other organs. We investigated the role of response gene to complement-32 (RGC-32), a proinflammatory and profibrotic mediator induced by TGFß and C5b-9, in nephrotoxic nephritis (NTN), an experimental model that mimics human lupus nephritis. Proteinuria, loss of renal function and kidney histopathology were attenuated in RGC-32 KO NTN mice. RGC-32 KO NTN mice displayed downregulation of the CCL20/CCR6 and CXCL9/CXCR3 ligand/receptor pairs resulting in decreased renal recruitment of IL-17+ and IFNγ+ cells and subsequent decrease in the influx of innate immune cells. RGC-32 deficiency attenuated renal fibrosis as demonstrated by decreased deposition of collagen I, III and fibronectin. Thus, RGC-32 is a unique mediator shared by the Th17 and Th1 dependent proinflammatory and profibrotic pathways and a potential novel therapeutic target in the treatment of immune complex mediated glomerulonephritis such as lupus nephritis.

2.
J Pharmacol Exp Ther ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858092

RESUMEN

Interleukin (IL)-33 has been shown to centrally regulate, among other processes, inflammation and fibrosis. Both intracellular full-length (FLIL33) precursor and extracellular mature cytokine (MIL33) forms exert such regulation, albeit differentially. Drug development efforts to target the IL-33 pathway have focused mostly on MIL33 and its specific cell-surface receptor, ST2, with limited attempts to negotiate the pathophysiological contributions from FLIL33. Furthermore, even a successful strategy for targeting MIL33 effects would arguably benefit from a simultaneous attenuation of the levels of FLIL33, which remains the continuous source of MIL33 supply. We therefore sought to develop an approach to depleting FLIL33 protein levels. We previously reported that the steady-state levels of FLIL33 are controlled in part through its proteasomal degradation and that such regulation can be mapped to a segment in the N-terminal portion of FLIL33. We hypothesized that disruption of this regulation would lead to a decrease in FLIL33 levels, thus inducing a beneficial therapeutic effect in an IL-33-dependent pathology. To test this hypothesis, we designed and tested cell-permeable decoy peptides (CPDPs) which mimic the target N-terminal FLIL33 region. We argued that such mimic peptides would compete with FLIL33 for the components of the native FLIL33 production and maintenance molecular machinery. Administered in the therapeutic regimen to bleomycin-challenged mice, the tested CPDPs alleviated the overall severity of the disease by restoring body weight loss and attenuating accumulation of collagen in the lungs. This proof-of-principle study lays the foundation for future work towards the development of this prospective therapeutic approach. Significance Statement An antifibrotic therapeutic approach is proposed and preclinically tested in mice in vivo based on targeting the full-length IL-33 precursor protein. Peptide fusion constructs consisted of a cell-permeable sequence fused with a sequence mimicking an N-terminal segment of IL-33 precursor that is responsible for this protein's stability. Systemic administration of such peptides to mice in either the acute intratracheal or chronic systemic bleomycin challenge models leads to a decrease in the bleomycin-induced elevations of pulmonary IL-33 and collagen.

3.
Cell Immunol ; 383: 104657, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603504

RESUMEN

Mature IL-33 (MIL33) acting through its receptor, ST2, is known to regulate fibrosis. The precursor, full-length IL-33 (FLIL33), may function differently from MIL33 and independently of ST2. Here we report that genetic deletion of either IL-33 or ST2 attenuates pulmonary fibrosis in the bleomycin model, as does Cre-induced IL-33 deficiency in response to either acute or chronic bleomycin challenge. However, adenovirus-mediated gene delivery of FLIL33, but not MIL33, to the lungs of either wild-type or ST2-deficient mice potentiates the profibrotic effect of bleomycin without inducing a Th2 phenotype. In cultured mouse lung cells, FLIL33 overexpression induces moderate and distinct transcriptomic changes compared with a robust response induced by MIL33, whereas ST2 deletion abrogates the effects of both IL-33 forms. Thus, FLIL33 may contribute to fibrosis in an ST2-independent, Th2-independent, non-transcriptomic fashion, suggesting that pharmacological targeting of both FLIL33 and MIL33 may prove efficacious in patients with pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Interleucina-33/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Fibrosis , Bleomicina , Ratones Endogámicos C57BL
4.
Am J Respir Cell Mol Biol ; 66(2): 146-157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34668840

RESUMEN

Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-ß in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-ß on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-ß stimulation, induced notable transcriptomic changes that negated the effects of TGF-ß, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-ß-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.


Asunto(s)
Fibroblastos/metabolismo , Pulmón/metabolismo , Proteínas Nucleares/fisiología , Fibrosis Pulmonar/prevención & control , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Ciclo Celular , Células Cultivadas , Femenino , Fibroblastos/patología , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Proteína Smad2/genética , Transcriptoma , Factor de Crecimiento Transformador beta3/genética
5.
Am J Transplant ; 22(8): 1963-1975, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510760

RESUMEN

Pathways regulating lung alloimmune responses differ from most other solid organs and remain poorly explored. Based on our recent work identifying the unique role of eosinophils in downregulating lung alloimmunity, we sought to define pathways contributing to eosinophil migration and homeostasis. Using a murine lung transplant model, we have uncovered that immunosuppression increases eosinophil infiltration into the allograft in an IL-5-dependent manner. IL-5 production depends on immunosuppression-mediated preservation of donor-derived group 2 innate lymphoid cells (ILC2). We further describe that ischemia reperfusion injury upregulates the expression of IL-33, which functions as the dominant and nonredundant mediator of IL-5 production by graft-resident ILC2. Our work thus identifies unique cellular mechanisms that contribute to lung allograft acceptance. Notably, ischemia reperfusion injury, widely considered to be solely deleterious to allograft survival, can also downregulate alloimmune responses by initiating unique pathways that promote IL-33/IL-5/eosinophil-mediated tolerance.


Asunto(s)
Interleucina-33 , Daño por Reperfusión , Aloinjertos , Animales , Inmunidad Innata , Interleucina-33/metabolismo , Interleucina-5/metabolismo , Pulmón/metabolismo , Linfocitos , Ratones , Daño por Reperfusión/metabolismo
6.
Neuropathol Appl Neurobiol ; 48(2): e12768, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34543449

RESUMEN

BACKGROUND: Lenabasum is a synthetic cannabinoid receptor type-2 (CB2) agonist able to exert potent anti-inflammatory effects, but its role on T cells remains unknown. OBJECTIVES: The present study was undertaken to investigate anti-inflammatory mechanisms of lenabasum in T lymphocyte subsets and its in vivo therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). METHODS: Mononuclear cells from 17 healthy subjects (HS) and 25 relapsing-remitting multiple sclerosis (RRMS) patients were activated in presence or absence of lenabasum and analysed by flow cytometry and qRT-PCR. EAE mice were treated with lenabasum, and clinical score and neuroinflammation were evaluated. RESULTS: Lenabasum significantly reduced TNF-a production from CD4+ T cells and CD8+ T cells in a dose-dependent manner in both HS and RRMS patients. In MS patients, lenabasum also reduced activation marker CD25 and inhibited IL-2 production from both T cell subsets and IFN-γ and IL-17 from committed Th1 and Th17 cells, respectively. These effects were blocked by the pretreatment with selective CB2 inverse agonist SR144528. In vivo treatment of EAE mice with lenabasum significantly ameliorated disease severity, reduced neuroinflammation and demyelination in spinal cord. CONCLUSION: Lenabasum exerts potent T cell-mediated immunomodulatory effects, suggesting CB2 as a promising pharmacological target to counteract neuroinflammation in MS.


Asunto(s)
Antiinflamatorios/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/análogos & derivados , Esclerosis Múltiple Recurrente-Remitente/inmunología , Receptor Cannabinoide CB2/agonistas , Subgrupos de Linfocitos T/efectos de los fármacos , Adulto , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dronabinol/farmacología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Masculino , Ratones , Subgrupos de Linfocitos T/inmunología
7.
J Pharmacol Exp Ther ; 376(1): 136-146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139318

RESUMEN

Pulmonary fibrosis remains a serious biomedical problem with no cure and an urgent need for better therapies. Neuraminidases (NEUs), including NEU1, have been recently implicated in the mechanism of pulmonary fibrosis by us and others. We now have tested the ability of a broad-spectrum neuraminidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), to modulate the in vivo response to acute intratracheal bleomycin challenge as an experimental model of pulmonary fibrosis. A marked alleviation of bleomycin-induced body weight loss and notable declines in accumulation of pulmonary lymphocytes and collagen deposition were observed. Real-time polymerase chain reaction analyses of human and mouse lung tissues and primary human lung fibroblast cultures were also performed. A predominant expression and pronounced elevation in the levels of NEU1 mRNA were observed in patients with idiopathic pulmonary fibrosis and bleomycin-challenged mice compared with their corresponding controls, whereas NEU2, NEU3, and NEU4 were expressed at far lower levels. The levels of mRNA for the NEU1 chaperone, protective protein/cathepsin A (PPCA), were also elevated by bleomycin. Western blotting analyses demonstrated bleomycin-induced elevations in protein expression of both NEU1 and PPCA in mouse lungs. Two known selective NEU1 inhibitors, C9-pentyl-amide-DANA (C9-BA-DANA) and C5-hexanamido-C9-acetamido-DANA, dramatically reduced bleomycin-induced loss of body weight, accumulation of pulmonary lymphocytes, and deposition of collagen. Importantly, C9-BA-DANA was therapeutic in the chronic bleomycin exposure model with no toxic effects observed within the experimental timeframe. Moreover, in the acute bleomycin model, C9-BA-DANA attenuated NEU1-mediated desialylation and shedding of the mucin-1 ectodomain. These data indicate that NEU1-selective inhibition offers a potential therapeutic intervention for pulmonary fibrotic diseases. SIGNIFICANCE STATEMENT: Neuraminidase-1-selective therapeutic targeting in the acute and chronic bleomycin models of pulmonary fibrosis reverses pulmonary collagen deposition, accumulation of lymphocytes in the lungs, and the disease-associated loss of body weight-all without observable toxic effects. Such therapy is as efficacious as nonspecific inhibition of all neuraminidases in these models, thus indicating the central role of neuraminidase-1 as well as offering a potential innovative, specifically targeted, and safe approach to treating human patients with a severe malady: pulmonary fibrosis.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Ácido N-Acetilneuramínico/análogos & derivados , Neuraminidasa/antagonistas & inhibidores , Neumonía/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina/toxicidad , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mucina-1/metabolismo , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/uso terapéutico , Neuraminidasa/genética , Neuraminidasa/metabolismo , Neumonía/etiología , Fibrosis Pulmonar/etiología
8.
J Biol Chem ; 294(2): 662-678, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429216

RESUMEN

Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.


Asunto(s)
Flagelina/metabolismo , Mucina-1/metabolismo , Neuraminidasa/metabolismo , Neumonía Bacteriana/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología , Animales , Femenino , Interacciones Huésped-Patógeno , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones Endogámicos BALB C , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Factores Protectores , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología
9.
Cell Immunol ; 357: 104203, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32977155

RESUMEN

IL-33 has emerged as a central mediator of immune, inflammatory, and fibrotic responses. Many studies have focused on mature IL-33, but elevated expression of the precursor, full-length IL-33 (FLIL33), has also been implicated in a spectrum of diseases, including tissue fibrosis. We previously reported and now confirmed that overexpression of FLIL33 induced phosphorylation of the key profibrotic signaling mediator of TGF-ß, Smad3, in primary human lung fibroblasts from healthy donors and idiopathic pulmonary fibrosis patients. Presently, we demonstrate that FLIL33-induced Smad3 phosphorylation was not abrogated by anti-TGF-ß antibody but was abrogated by ALK5/TGFBR1-specific and Smad3-specific inhibition, indicating that FLIL33 effect was independent of TGF-ß but dependent on its receptor, TGFBR. Western blotting analyses revealed that FLIL33 overexpression increased levels, but did not affect subcellular distribution, of the AP2A1 and AP2B1 subunits of the adaptor protein complex 2 (AP2), a known TGFBR binding partner. siRNA-mediated inhibition of these subunits blocked FLIL33-induced Smad3 phosphorylation, whereas AP2 subunit overexpression induced Smad3 phosphorylation even in the absence of FLIL33. RNA-Seq transcriptomic analyses revealed that fibroblast stimulation with TGF-ß induced major changes in expression levels of numerous genes, whereas overexpression of FLIL33 induced modest expression changes in a small number of genes. Furthermore, qRT-PCR tests demonstrated that despite inducing Smad3 phosphorylation, FLIL33 did not induce collagen gene transcription and even mildly attenuated TGF-ß-induced levels of collagen I and III mRNAs. We conclude that FLIL33 induces Smad3 phosphorylation through a TGF-ß-independent but TGF-ß receptor- and AP2- dependent mechanism and has limited downstream transcriptomic consequences.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Interleucina-33/metabolismo , Proteína smad3/metabolismo , Adulto , Femenino , Fibroblastos/metabolismo , Fibrosis/fisiopatología , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Masculino , Fosforilación , Unión Proteica , Transporte de Proteínas , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
10.
Eur Respir J ; 54(1)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31073086

RESUMEN

BACKGROUND: Pulmonary fibrosis is one of the leading indications for lung transplantation. The disease, which is of unknown aetiology, can be progressive, resulting in distortion of the extracellular matrix (ECM), inflammation, fibrosis and eventual death. METHODS: 13 patients born to consanguineous parents from two unrelated families presenting with interstitial lung disease were clinically investigated. Nine patients developed respiratory failure and subsequently died. Molecular genetic investigations were performed on patients' whole blood or archived tissues, and cell biological investigations were performed on patient-derived fibroblasts. RESULTS: The combination of a unique pattern of early-onset lung fibrosis (at 12-15 years old) with distinctive radiological findings, including 1) traction bronchiectasis, 2) intralobular septal thickening, 3) shrinkage of the secondary pulmonary lobules mainly around the bronchovascular bundles and 4) early type 2 respiratory failure (elevated blood carbon dioxide levels), represents a novel clinical subtype of familial pulmonary fibrosis. Molecular genetic investigation of families revealed a hypomorphic variant in S100A3 and a novel truncating mutation in S100A13, both segregating with the disease in an autosomal recessive manner. Family members that were either heterozygous carriers or wild-type normal for both variants were unaffected. Analysis of patient-derived fibroblasts demonstrated significantly reduced S100A3 and S100A13 expression. Further analysis demonstrated aberrant intracellular calcium homeostasis, mitochondrial dysregulation and differential expression of ECM components. CONCLUSION: Our data demonstrate that digenic inheritance of mutations in S100A3 and S100A13 underlie the pathophysiology of pulmonary fibrosis associated with a significant reduction of both proteins, which suggests a calcium-dependent therapeutic approach for management of the disease.


Asunto(s)
Pulmón/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/fisiopatología , Proteínas S100/genética , Adolescente , Niño , Salud de la Familia , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Fibrosis Pulmonar/diagnóstico , Arabia Saudita
11.
Cytokine ; 119: 1-6, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30856600

RESUMEN

Proteolytic activation of the IL-33 precursor, full-length interleukin-33 (FLIL33), at multiple sites within the sensor domain (aa 95-109) yields several functionally mature (MIL33) forms. Unlike nuclear FLIL33, intracellular MIL33 occurs in the cytoplasm, is secreted from source cells, and exerts biological effects by activating the ST2 receptor on target cells. Previous studies and our findings in this report indicated that IL-33 forms that are substantially longer than those produced by cleavage within the sensor domain are biologically indistinguishable from classical MIL33. We utilized a series of human and mouse N-terminal FLIL33 mutants to narrow down the boundaries of the nuclear localization sequence to aa 46-67, a segment known to include a portion of the chromatin-binding motif as well as another site controlling intracellular stability of FLIL33 in an importin-5-dependent fashion. The N-terminal FLIL33 deletion mutants starting prior to this region were intranuclear, non-secreted in cell culture, and manifested modest functional activity in vivo, similar to FLIL33. By contrast, the mutants starting after this region were cytoplasmic, secreted from cells in culture, and overtly biologically active in vivo, similar to MIL33. The deletion mutants starting within this region manifested an intermediate phenotype between FLIL33 and MIL33. Thus, this segment of IL-33 molecule controls multiple aspects of its biology, including subcellular localization, extracellular secretion, and functional maturation into the longest possible form of mature IL-33 cytokine. Future anti-IL-33 therapies may be based on interfering with this segment, thus restraining extracellular release and maturation of IL-33 into the active cytokine.


Asunto(s)
Interleucina-33/metabolismo , Animales , Transporte Biológico/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología
12.
Medicina (Kaunas) ; 55(9)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509942

RESUMEN

Combined pulmonary fibrosis and emphysema (CPFE) has been increasingly recognized over the past 10-15 years as a clinical entity characterized by rather severe imaging and gas exchange abnormalities, but often only mild impairment in spirometric and lung volume indices. In this review, we explore the gas exchange and mechanical pathophysiologic abnormalities of pulmonary emphysema, pulmonary fibrosis, and combined emphysema and fibrosis with the goal of understanding how individual pathophysiologic observations in emphysema and fibrosis alone may impact clinical observations on pulmonary function testing (PFT) patterns in patients with CPFE. Lung elastance and lung compliance in patients with CPFE are likely intermediate between those of patients with emphysema and fibrosis alone, suggesting a counter-balancing effect of each individual process. The outcome of combined emphysema and fibrosis results in higher lung volumes overall on PFTs compared to patients with pulmonary fibrosis alone, and the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio in CPFE patients is generally preserved despite the presence of emphysema on chest computed tomography (CT) imaging. Conversely, there appears to be an additive deleterious effect on gas exchange properties of the lungs, reflecting a loss of normally functioning alveolar capillary units and effective surface area available for gas exchange, and manifested by a uniformly observed severe reduction in the diffusing capacity for carbon monoxide (DLCO). Despite normal or only mildly impaired spirometric and lung volume indices, patients with CPFE are often severely functionally impaired with an overall rather poor prognosis. As chest CT imaging continues to be a frequent imaging modality in patients with cardiopulmonary disease, we expect that patients with a combination of pulmonary emphysema and pulmonary fibrosis will continue to be observed. Understanding the pathophysiology of this combined process and the abnormalities that manifest on PFT testing will likely be helpful to clinicians involved with the care of patients with CPFE.


Asunto(s)
Enfisema Pulmonar/complicaciones , Fibrosis Pulmonar/complicaciones , Pruebas de Función Respiratoria , Humanos , Enfisema Pulmonar/fisiopatología , Fibrosis Pulmonar/fisiopatología
13.
J Biol Chem ; 292(52): 21653-21661, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29127199

RESUMEN

Human mature IL-33 is a member of the IL-1 family and a potent regulator of immunity through its pro-T helper cell 2 activity. Its precursor form, full-length interleukin-33 (FLIL33), is an intranuclear protein in many cell types, including fibroblasts, and its intracellular levels can change in response to stimuli. However, the mechanisms controlling the nuclear localization of FLIL33 or its stability in cells are not understood. Here, we identified importin-5 (IPO5), a member of the importin family of nuclear transport proteins, as an intracellular binding partner of FLIL33. By overexpressing various FLIL33 protein segments and variants in primary human lung fibroblasts and HEK293T cells, we show that FLIL33, but not mature interleukin-33, physically interacts with IPO5 and that this interaction localizes to a cluster of charged amino acids (positions 46-56) but not to an adjacent segment (positions 61-67) in the FLIL33 N-terminal region. siRNA-mediated IPO5 knockdown in cell culture did not affect nuclear localization of FLIL33. However, the IPO5 knockdown significantly decreased the intracellular levels of overexpressed FLIL33, reversed by treatment with the 20S proteasome inhibitor bortezomib. Furthermore, FLIL33 variants deficient in IPO5 binding remained intranuclear and exhibited decreased levels, which were also restored by the bortezomib treatment. These results indicate that the interaction between FLIL33 and IPO5 is localized to a specific segment of the FLIL33 protein, is not required for nuclear localization of FLIL33, and protects FLIL33 from proteasome-dependent degradation.


Asunto(s)
Interleucina-33/metabolismo , beta Carioferinas/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-33/genética , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , beta Carioferinas/genética
14.
Cell Immunol ; 325: 1-13, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29329637

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease manifested by overtly scarred peripheral and basilar regions and more normal-appearing central lung areas. Lung tissues from macroscopically normal-appearing (IPFn) and scarred (IPFs) areas of explanted IPF lungs were analyzed by RNASeq and compared with healthy control (HC) lung tissues. There were profound transcriptomic changes in IPFn compared with HC tissues, which included elevated expression of numerous immune-, inflammation-, and extracellular matrix-related mRNAs, and these changes were similar to those observed with IPFs compared to HC. Comparing IPFn directly to IPFs, elevated expression of epithelial mucociliary mRNAs was observed in the IPFs tissues. Thus, despite the known geographic tissue heterogeneity in IPF, the entire lung is actively involved in the disease process, and demonstrates pronounced elevated expression of numerous immune-related genes. Differences between normal-appearing and scarred tissues may thus be driven by deranged epithelial homeostasis or possibly non-transcriptomic factors.


Asunto(s)
Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/inmunología , Pulmón/inmunología , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Ontología de Genes , Humanos , Pulmón/metabolismo , Activación de Macrófagos/inmunología , Cultivo Primario de Células , ARN Mensajero/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética
15.
Curr Rheumatol Rep ; 20(4): 16, 2018 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-29550994

RESUMEN

PURPOSE OF REVIEW: Premature activation of aging-associated molecular mechanisms is emerging as an important contributor to many diseases, including scleroderma. Among central regulators of the aging process are a group of histone deacetylases called sirtuins (SIRTs). Recent findings implicate these molecules as pathophysiological players in scleroderma skin and lung fibrosis. The goal of this article is to review recent studies on the involvement of SIRTs in scleroderma from the perspective of aging-related molecular mechanisms. RECENT FINDINGS: Despite a degree of controversy in this rapidly developing field, the majority of data suggest that SIRT levels are decreased in tissues from patients with scleroderma compared to healthy controls as well as in animal models of scleroderma. Molecular studies reveal several mechanisms through which declining SIRT levels contribute to fibrosis, with the most attention given to modulation of the TGF-ß signaling pathway. Activation of SIRTs in cell culture and in animal models elicits antifibrotic effects. Declining SIRT levels and activity are emerging as pathophysiological contributors to scleroderma. Restoration of SIRTs may be therapeutic in patients with scleroderma.


Asunto(s)
Envejecimiento/metabolismo , Esclerodermia Sistémica/metabolismo , Sirtuinas/metabolismo , Piel/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Esclerodermia Sistémica/patología , Piel/patología
16.
Int J Hyperthermia ; 34(1): 1-10, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28540808

RESUMEN

BACKGROUND: As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. METHODS: We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. RESULTS: Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. CONCLUSIONS: Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Epitelio/metabolismo , Fiebre/genética , Fiebre/fisiopatología , Expresión Génica/genética , Pulmón/metabolismo , Adulto , Humanos , Masculino , Transducción de Señal
17.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L945-L958, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28385812

RESUMEN

Pulmonary fibrosis is a severe condition with no cure and limited therapeutic options. A better understanding of its pathophysiology is needed. Recent studies have suggested that pulmonary fibrosis may be driven by accelerated aging-related mechanisms. Sirtuins (SIRTs), particularly SIRT1, SIRT3, and SIRT6, are well-known mediators of aging; however, limited data exist on the contribution of sirtuins to lung fibrosis. We assessed the mRNA and protein levels of all seven known sirtuins in primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-associated interstitial lung disease (SSc-ILD) in comparison with lung fibroblasts from healthy controls. These unbiased tests revealed a tendency for all sirtuins to be expressed at lower levels in fibroblasts from patients compared with controls, but the greatest decrease was observed with SIRT7. Similarly, SIRT7 was decreased in lung tissues of bleomycin-challenged mice. Inhibition of SIRT7 with siRNA in cultured lung fibroblasts resulted in an increase in collagen and α-smooth muscle actin (α-SMA). Reciprocally, overexpression of SIRT7 resulted in lower basal and TGF-ß-induced levels of COL1A1, COL1A2, COL3A1, and α-SMA mRNAs, as well as collagen and α-SMA proteins. Induced changes in SIRT7 had no effect on endogenous TGF-ß mRNA levels or latent TGF-ß activation, but overexpression of SIRT7 reduced the levels of Smad3 mRNA and protein. In conclusion, the decline in SIRT7 in lung fibroblasts has a profibrotic effect, which is mediated by changes in Smad3 levels.


Asunto(s)
Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Sirtuinas/metabolismo , Actinas/metabolismo , Adulto , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Colágeno/metabolismo , Dermis/patología , Femenino , Fibroblastos/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Inmunohistoquímica , Recién Nacido , Ratones Endogámicos C57BL , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sirtuinas/genética , Proteína smad3/metabolismo , Fracciones Subcelulares/metabolismo , Factor de Crecimiento Transformador beta/farmacología
18.
RNA ; 21(7): 1261-73, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26018549

RESUMEN

Previous studies have revealed that clinically relevant changes in temperature modify clinically relevant gene expression profiles through transcriptional regulation. Temperature dependence of post-transcriptional regulation, specifically, through expression of miRNAs has been less studied. We comprehensively analyzed the effect of 24 h exposure to 32°C or 39.5°C on miRNA expression profile in primary cultured human small airway epithelial cells (hSAECs) and its impact on expression of a targeted protein, protein kinase C α (PKCα). Using microarray, and solution hybridization-based nCounter assays, with confirmation by quantitative RT-PCR, we found significant temperature-dependent changes in expression level of only five mature human miRNAs, representing only 1% of detected miRNAs. Four of these five miRNAs are the less abundant passenger (star) strands. They exhibited a similar pattern of increased expression at 32°C and reduced expression at 39.5°C relative to 37°C. As PKCα mRNA has multiple potential binding sites for three of these miRNAs, we analyzed PKCα protein expression in HEK 293T cells and hSAECs. PKCα protein levels were lowest at 32°C and highest at 39.5°C and specific miRNA inhibitors reduced these effects. Finally, we analyzed cell-cycle progression in hSAECs and found 32°C cells exhibited the greatest G1 to S transition, a process known to be inhibited by PKCα, and the effect was mitigated by specific miRNA inhibitors. These results demonstrate that exposure to clinically relevant hypothermia or hyperthermia modifies expression of a narrow subset of miRNAs and impacts expression of at least one signaling protein involved in multiple important cellular processes.


Asunto(s)
Calor , MicroARNs/metabolismo , Humanos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
19.
J Biol Chem ; 290(30): 18316-31, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25963144

RESUMEN

Airway epithelia express sialylated receptors that recognize exogenous danger signals. Regulation of receptor responsiveness to these signals remains incompletely defined. Here, we explore the mechanisms through which the human sialidase, neuraminidase-1 (NEU1), promotes the interaction between the sialoprotein, mucin 1 (MUC1), and the opportunistic pathogen, Pseudomonas aeruginosa. P. aeruginosa flagellin engaged the MUC1 ectodomain (ED), increasing NEU1 association with MUC1. The flagellin stimulus increased the association of MUC1-ED with both NEU1 and its chaperone/transport protein, protective protein/cathepsin A. Scatchard analysis demonstrated NEU1-dependent increased binding affinity of flagellin to MUC1-expressing epithelia. NEU1-driven MUC1-ED desialylation rapidly increased P. aeruginosa adhesion to and invasion of the airway epithelium. MUC1-ED desialylation also increased its shedding, and the shed MUC1-ED competitively blocked P. aeruginosa adhesion to cell-associated MUC1-ED. Levels of desialylated MUC1-ED were elevated in the bronchoalveolar lavage fluid of mechanically ventilated patients with P. aeruginosa airway colonization. Preincubation of P. aeruginosa with these same ex vivo fluids competitively inhibited bacterial adhesion to airway epithelia, and MUC1-ED immunodepletion completely abrogated their inhibitory activity. These data indicate that a prokaryote, P. aeruginosa, in a ligand-specific manner, mobilizes eukaryotic NEU1 to enhance bacterial pathogenicity, but the host retaliates by releasing MUC1-ED into the airway lumen as a hyperadhesive decoy receptor.


Asunto(s)
Flagelina/metabolismo , Pulmón/metabolismo , Mucina-1/metabolismo , Neuraminidasa/metabolismo , Pseudomonas aeruginosa/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Líquido del Lavado Bronquioalveolar , Línea Celular , Humanos , Pulmón/microbiología , Pulmón/patología , Ácido N-Acetilneuramínico/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/patogenicidad
20.
Glycobiology ; 26(8): 834-49, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226251

RESUMEN

Neuraminidase-1 (NEU1) is the predominant sialidase expressed in human airway epithelia and lung microvascular endothelia where it mediates multiple biological processes. We tested whether the NEU1-selective sialidase inhibitor, C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (C9-BA-DANA), inhibits one or more established NEU1-mediated bioactivities in human lung cells. We established the IC50 values of C9-BA-DANA for total sialidase activity in human airway epithelia, lung microvascular endothelia and lung fibroblasts to be 3.74 µM, 13.0 µM and 4.82 µM, respectively. In human airway epithelia, C9-BA-DANA dose-dependently inhibited flagellin-induced, NEU1-mediated mucin-1 ectodomain desialylation, adhesiveness for Pseudomonas aeruginosa and shedding. In lung microvascular endothelia, C9-BA-DANA reversed NEU1-driven restraint of cell migration into a wound and disruption of capillary-like tube formation. NEU1 and its chaperone/transport protein, protective protein/cathepsin A (PPCA), were differentially expressed in these same cells. Normalized NEU1 protein expression correlated with total sialidase activity whereas PPCA expression did not. In contrast to eukaryotic sialidases, C9-BA-DANA exerted far less inhibitory activity for three selected bacterial neuraminidases (IC50 > 800 µM). Structural modeling of the four human sialidases and three bacterial neuraminidases revealed a loop between the seventh and eighth strands of the ß-propeller fold, that in NEU1, was substantially shorter than that seen in the six other enzymes. Predicted steric hindrance between this loop and C9-BA-DANA could explain its selectivity for NEU1. Finally, pretreatment of mice with C9-BA-DANA completely protected against flagellin-induced increases in lung sialidase activity. Our combined data indicate that C9-BA-DANA inhibits endogenous and ectopically expressed sialidase activity and established NEU1-mediated bioactivities in human airway epithelia, lung microvascular endothelia, and fibroblasts in vitro and murine lungs in vivo.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Pulmón/efectos de los fármacos , Mucina-1/química , Ácido N-Acetilneuramínico/farmacología , Neuraminidasa/antagonistas & inhibidores , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catepsina A/genética , Catepsina A/metabolismo , Movimiento Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Flagelina/antagonistas & inhibidores , Flagelina/farmacología , Regulación de la Expresión Génica , Humanos , Hidrólisis , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Pulmón/citología , Pulmón/enzimología , Ratones , Modelos Moleculares , Mucina-1/genética , Mucina-1/metabolismo , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/química , Neuraminidasa/genética , Neuraminidasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA