Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542228

RESUMEN

Recently, we identified a novel mechanism of enzyme inhibition in N-myristoyltransferases (NMTs), which we have named 'inhibitor trapping'. Inhibitor trapping occurs when the protein captures the small molecule within its structural confines, thereby preventing its free dissociation and resulting in a dramatic increase in inhibitor affinity and potency. Here, we demonstrate that inhibitor trapping also occurs in the kinases. Remarkably, the drug imatinib, which has revolutionized targeted cancer therapy, is entrapped in the structure of the Abl kinase. This effect is also observed in p38α kinase, where inhibitor trapping was found to depend on a 'magic' methyl group, which stabilizes the protein conformation and increases the affinity of the compound dramatically. Altogether, these results suggest that inhibitor trapping is not exclusive to N-myristoyltransferases, as it also occurs in the kinase family. Inhibitor trapping could enhance the binding affinity of an inhibitor by thousands of times and is as a key mechanism that plays a critical role in determining drug affinity and potency.


Asunto(s)
Piperazinas , Pirimidinas , Pirimidinas/farmacología , Piperazinas/farmacología , Benzamidas/farmacología , Mesilato de Imatinib/farmacología , Proteínas de Fusión bcr-abl/metabolismo , Familia-src Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257197

RESUMEN

Peptide-protein interactions form a cornerstone in molecular biology, governing cellular signaling, structure, and enzymatic activities in living organisms. Improving computational models and experimental techniques to describe and predict these interactions remains an ongoing area of research. Here, we present a computational method for peptide-protein interactions' description and prediction based on leveraged amino acid frequencies within specific binding cores. Utilizing normalized frequencies, we construct quantitative matrices (QMs), termed 'logo models' derived from sequence logos. The method was developed to predict peptide binding to HLA-DQ2.5 and HLA-DQ8.1 proteins associated with susceptibility to celiac disease. The models were validated by more than 17,000 peptides demonstrating their efficacy in discriminating between binding and non-binding peptides. The logo method could be applied to diverse peptide-protein interactions, offering a versatile tool for predictive analysis in molecular binding studies.


Asunto(s)
Enfermedad Celíaca , Péptidos , Humanos , Aminoácidos , Biología Molecular , Posición Específica de Matrices de Puntuación
3.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511367

RESUMEN

Predicting inhibitor potency is critical in drug design and development, yet it has remained one of computational biology's biggest unresolved challenges. Here, we show that in the case of the N-myristoyltransferase (NMT), this problem could be traced to the mechanisms by which the NMT enzyme is inhibited. NMT adopts open or closed conformations necessary for orchestrating the different steps of the catalytic process. The results indicate that the potency of the NMT inhibitors is determined by their ability to stabilize the enzyme conformation in the closed state, and that in this state, the small molecules themselves are trapped and locked inside the structure of the enzyme, creating a significant barrier for their dissociation. By using molecular dynamics simulations, we demonstrate that the conformational stabilization of the protein molecule in its closed form is highly correlated with the ligands activity and can be used to predict their potency. Hence, predicting inhibitor potency in silico might depend on modeling the conformational changes of the protein molecule upon binding of the ligand rather than estimating the changes in free binding energy that arise from their interaction.


Asunto(s)
Aciltransferasas , Simulación de Dinámica Molecular , Aciltransferasas/metabolismo
4.
Molecules ; 29(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202724

RESUMEN

Human leukocyte antigens (HLAs) are pivotal in antigen processing, presenting to CD4+ T cells, and are linked to autoimmune disease susceptibility. In celiac disease, HLA-DQ2.5 and HLA-DQ8.1 bind gluten peptides on APCs, some recognized by CD4+ T cells, prompting inflammation and tissue damage. While extensively studied experimentally, these alleles lack comprehensive in silico analysis. To explore peptide-HLA preferences, we used molecular docking on peptide libraries, deriving quantitative matrices (QMs) for evaluating amino acids at nine-residue peptide binding cores. Our findings tie specific residue preferences to peptide backbone conformations. Validating QMs on known binders and non-binders showed strong predictive power (89-94% accuracy). These QMs excel in screening protein libraries, even whole proteomes, notably reducing time and costs for celiac disease risk assessment in novel proteins. This computational approach aligns with European Food Safety Authority guidance, promising efficient screening for potential celiac disease triggers.


Asunto(s)
Enfermedad Celíaca , Humanos , Simulación del Acoplamiento Molecular , Glútenes , Aminoácidos , Péptidos
5.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677597

RESUMEN

Three new monosquaramides (3a-c) were synthesized, characterized by IR, NMR and X-ray, and evaluated for inhibitory activity against deoxyribonuclease I (DNase I) and xanthine oxidase (XO) in vitro. The target compounds inhibited DNase I with IC50 values below 100 µM, being at the same time more potent DNase I inhibitors than crystal violet, used as a positive control. 3-Ethoxy-4-((1-(pyridin-3-yl)propan-2-yl)amino)cyclobut-3-ene-1,2-dione (3c) stood out as the most potent compound, exhibiting a slightly better IC50 value (48.04 ± 7.98 µM) compared to the other two compounds. In order to analyze potential binding sites for the studied compounds with DNase I, a molecular docking study was performed. Compounds 3a-c are among the most potent small organic DNase I inhibitors tested to date.


Asunto(s)
Desoxirribonucleasa I , Inhibidores Enzimáticos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Xantina Oxidasa
6.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499171

RESUMEN

Oxidative stress is an essential factor in the development and progression of Alzheimer's disease (AD). An excessive amount of reactive oxygen species (ROS) induces the peroxidation of lipid membranes, reduces the activity of antioxidant enzymes and causes neurotoxicity. In this study, we investigated the antioxidant and cholinesterase inhibitory potential of a novel galantamine-curcumin hybrid, named 4b, administered orally in two doses (2.5 mg/kg and 5 mg/kg) in scopolamine (SC)-induced neurotoxicity in mice. To evaluate the effects of 4b, we used galantamine (GAL) (3 mg/kg) and curcumin (CCN) (25 mg/kg) as positive controls. Ex vivo experiments on mouse brains showed that the higher dose of 4b (5 mg/kg) increased reduced glutathione (GSH) levels by 46%, catalase (CAT) and superoxide dismutase (SOD) activity by 57%, and glutathione peroxidase (GPx) activity by 108%, compared with the SC-treated group. At the same time, 4b (5 mg/kg) significantly reduced the brain malondialdehyde (MDA) level by 31% and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities by 40% and 30%, respectively, relative to the SC-impaired group. The results showed that 4b acted as an antioxidant agent and brain protector, making it promising for further experimental research in the field of neurodegenerative diseases.


Asunto(s)
Curcumina , Síndromes de Neurotoxicidad , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Butirilcolinesterasa , Escopolamina/farmacología , Acetilcolinesterasa/metabolismo , Curcumina/farmacología , Peroxidación de Lípido , Galantamina/farmacología , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Estrés Oxidativo , Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo
7.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080246

RESUMEN

N-myristoyltransferase (NMT) inhibitors that were initially developed for treatment of parasitic protozoan infections, including sleeping sickness, malaria, and leismaniasis, have also shown great promise as treatment for oncological diseases. The successful transition of NMT inhibitors, which are currently at preclinical to early clinical stages, toward clinical approval and utilization may depend on the development and design of a diverse set of drug molecules with particular selectivity or pharmacological properties. In our study, we report that a common feature in the inhibitory mechanism of NMT is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of an enzyme. Based on this observation, we designed a virtual screening protocol to identify novel ligands that mimic this mode of interaction. By screening over 1.1 million structures downloaded from the ZINC database, several hits were identified that displayed NMT inhibitory activity. The stability of the inhibitor-NMT complexes was evaluated by molecular dynamics simulations. The ligands from the stable complexes were tested in vitro and some of them appear to be promising leads for further optimization.


Asunto(s)
Aciltransferasas , Inhibidores Enzimáticos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular
8.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630613

RESUMEN

Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer's disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 µs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inhibidores de la Colinesterasa/química , Galantamina/farmacología , Humanos , Simulación del Acoplamiento Molecular
9.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299209

RESUMEN

Misfolded amyloid beta (Aß) peptides aggregate and form neurotoxic oligomers. Membrane and mitochondrial damages, calcium dysregulation, oxidative stress, and fibril deposits are among the possible mechanisms of Aß cytotoxicity. Galantamine (GAL) prevents apoptosis induced by Aß mainly through the ability to stimulate allosterically the α7 nAChRs and to regulate the calcium cytosolic concentration. Here, we examined the cytoprotective effects of two GAL derivatives, namely compounds 4b and 8, against Aß cytotoxicity on the human neuroblastoma cell line SH-SY5Y. The protective effects were tested at simultaneous administration, pre-incubation and post-incubation, with Aß. GAL and curcumin (CU) were used in the study as reference compounds. It was found that 4b protects cells in a similar mode as GAL, while compound 8 and CU potentiate the toxic effects of Aß. Allosteric stimulation of α7 nAChRs is suggested as a possible mechanism of the cytoprotectivity of 4b. These and previous findings characterize 4b as a prospective non-toxic multi-target agent against neurodegenerative disorders with inhibitory activity on acetylcholinesterase, antioxidant, and cytoprotective properties.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Curcumina/química , Galantamina/química , Neuroblastoma/tratamiento farmacológico , Sustancias Protectoras/farmacología , Acetilcolinesterasa/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Inhibidores de la Colinesterasa/química , Curcumina/farmacología , Citoprotección , Galantamina/farmacología , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Sustancias Protectoras/química , Células Tumorales Cultivadas
10.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068636

RESUMEN

The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-ß (Aß) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aß monomer by 1 µs molecular dynamics (MD) simulations. We found that both inhibitors increase the helical propensity and decrease the non-helical propensity of Aß peptide. They prevent the formation of a dense bulk core and shorten the average lifetime of intramolecular hydrogen bonds in Aß. CU makes more and longer-lived hydrogen bonds, hydrophobic, π-π, and cation-π interactions with Aß peptide than FA does, which is in a good agreement with the observed stronger inhibitory activity of CU on Aß aggregation.


Asunto(s)
Péptidos beta-Amiloides/química , Ácidos Cumáricos/farmacología , Curcumina/farmacología , Pliegue de Proteína , Ácidos Cumáricos/química , Curcumina/química , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Solventes , Electricidad Estática
11.
Molecules ; 26(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806197

RESUMEN

The acetylcholinesterase (AChE) inhibitors are the main drugs for symptomatic treatment of neurodegenerative disorders like Alzheimer's disease. A recently designed, synthesized and tested hybrid compound between the AChE inhibitor galantamine (GAL) and the antioxidant polyphenol curcumin (CU) showed high AChE inhibition in vitro. Here, we describe tests for acute and short-term toxicity in mice as well as antioxidant tests on brain homogenates measured the levels of malondialdehide (MDA) and glutathione (GSH) and in vitro DPPH, ABTS, FRAP and LPO inhibition assays. Hematological and serum biochemical analyses were also performed. In the acute toxicity tests, the novel AChE inhibitor given orally in mice showed LD50 of 49 mg/kg. The short-term administration of 2.5 and 5 mg/kg did not show toxicity. In the ex vivo tests, the GAL-CU hybrid performed better than GAL and CU themselves; in a dose of 5 mg/kg, it demonstrates 25% reduction in AChE activity, as well as a 28% and 73% increase in the levels of MDA and GSH, respectively. No significant changes in blood biochemical data were observed. The antioxidant activity of 4b measured ex vivo was proven in the in vitro tests. In the ABTS assay, 4b showed radical scavenging activity 10 times higher than the positive control butylhydroxy toluol (BHT). The GAL-CU hybrid is a novel non-toxic AChE inhibitor with high antioxidant activity which makes it a prospective multitarget drug candidate for treatment of neurodegenerative disorders.


Asunto(s)
Encéfalo/metabolismo , Inhibidores de la Colinesterasa , Curcumina , Galantamina , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Encéfalo/patología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Curcumina/análogos & derivados , Curcumina/química , Curcumina/farmacología , Modelos Animales de Enfermedad , Femenino , Galantamina/análogos & derivados , Galantamina/química , Galantamina/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
12.
Molecules ; 26(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916760

RESUMEN

Despite extensive and intensive research efforts in recent decades, there is still no effective treatment for neurodegenerative diseases. On this background, the use of drugs inhibiting the enzyme acetylcholinesterase (AChE) remains an eternal evergreen in the symptomatic treatment of mild to moderate cognitive impairments. Even more, the cholinergic hypothesis, somewhat forgotten in recent years due to the shift in focus on amyloid cascade, is back to life, and the search for new, more effective AChE inhibitors continues. We generated a fragment-based library containing aromatic moieties and linkers originating from a set of novel AChE inhibitors. We used this library to design 1220 galantamine (GAL) derivatives following the model GAL (binding core) - linker (L) - aromatic fragment (Ar). The newly designed compounds were screened virtually for blood-brain barrier (BBB) permeability and binding to AChE. Among the top 10 best-scored compounds, a representative lead molecule was selected and tested for anti-AChE activity and neurotoxicity. It was found that the selected compound was a powerful non-toxic AChE inhibitor, 68 times more active than GAL, and could serve as a lead molecule for further optimization and development.


Asunto(s)
Inhibidores de la Colinesterasa/análisis , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Interfaz Usuario-Computador , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Línea Celular , Inhibidores de la Colinesterasa/química , Galantamina/química , Galantamina/farmacología , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neurotoxinas/toxicidad , Bibliotecas de Moléculas Pequeñas
13.
Arch Pharm (Weinheim) ; 353(7): e2000039, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32329137

RESUMEN

In this study, a Pt(IV) complex with 3'-methyl-4-thio-1H-tetrahydropyranspiro-5'-hydantoin (complex 1) was synthesized. The structure was determined via elemental analyses, infrared, 1 H, and 13 C nuclear magnetic resonance techniques. Density functional theory calculations were applied to optimize the molecular geometry and to calculate structural parameters and vibrational frequencies. The cytotoxicity of the newly synthesized complex 1 was assessed against K-562 and REH cells and compared with the cytotoxic effects of the ligand (L) and its Pd(IV) complex (complex 2). Complex 1 exhibited a better cytotoxic activity (IC50 = 76.9 µM against K-562 and 15.6 µM against REH cells) than L and complex 2, which was closer to the cytotoxic effect of cisplatin (IC50 = 36.9 µM and 1.07 µM against K-562 and REH cells, respectively), as compared with the ligand and complex 2. L and its complexes 1 and 2 were evaluated for inhibitory activity against xanthine oxidase (XO) in vitro, as compared with allopurinol (IC50 = 1.70 µM). Complex 1 was shown as a potent XO inhibitor, with an IC50 value of 19.33 µM, and the binding mode with the enzyme was predicted by molecular docking. Its inhibitory activity against XO is a potential advantage that might result in improved profile and anticancer activity.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Compuestos Organoplatinos/farmacología , Xantina Oxidasa/antagonistas & inhibidores , Adolescente , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Humanos , Células K562 , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Células Tumorales Cultivadas , Xantina Oxidasa/metabolismo
14.
Molecules ; 25(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717861

RESUMEN

Galantamine (GAL) and curcumin (CU) are alkaloids used to improve symptomatically neurodegenerative conditions like Alzheimer's disease (AD). GAL acts mainly as an inhibitor of the enzyme acetylcholinesterase (AChE). CU binds to amyloid-beta (Aß) oligomers and inhibits the formation of Aß plaques. Here, we combine GAL core with CU fragments and design a combinatorial library of GAL-CU hybrids as dual-site binding AChE inhibitors. The designed hybrids are screened for optimal ADME properties and BBB permeability and docked on AChE. The 14 best performing compounds are synthesized and tested in vitro for neurotoxicity and anti-AChE activity. Five of them are less toxic than GAL and CU and show activities between 41 and 186 times higher than GAL.


Asunto(s)
Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Curcumina/química , Galantamina/síntesis química , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Sitios de Unión , Barrera Hematoencefálica/metabolismo , Línea Celular , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Técnicas Químicas Combinatorias , Galantamina/química , Galantamina/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
15.
J Enzyme Inhib Med Chem ; 33(1): 768-776, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29651876

RESUMEN

The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/química , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 23(17): 5382-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26260334

RESUMEN

The inhibitors of acetylcholinesterase are the main therapy against Alzheimer's disease. Among them, galantamine is the best tolerated and the most prescribed drug. In the present study, 41 galantamine derivatives with known acetylcholinesterase inhibitory activities expressed as IC50 were selected from the literature and docked into a recombinant human acetylcholinesterase by GOLD. A linear relationship between GoldScores and pIC50 values was found and used to design and predict novel galantamine derivatives with indole moiety in the side chain. The four best predicted compounds were synthesized and tested for inhibitory activity. All of them were between 11 and 95 times more active than galantamine. The novel galantamine derivatives with indole moiety have dual site binding to the enzyme--the galantamine moiety binds to the catalytic anionic site and the indole moiety binds to peripheral anionic site. Additionally, the indole moiety of one of the novel inhibitors binds in a region, close to the peripheral anionic site of the enzyme, where the Ω-loop of amyloid beta peptide adheres to acetylcholinesterase. This compound emerges as a promising lead compound for multi-target anti-Alzheimer therapy not only because of the strong inhibitory activity, but also because it is able to block the amyloid beta deposition on acetylcholinesterase.


Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Galantamina/análogos & derivados , Galantamina/farmacología , Indoles/química , Indoles/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Diseño de Fármacos , Galantamina/síntesis química , Humanos , Indoles/síntesis química , Liliaceae/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
17.
Methods Mol Biol ; 2673: 237-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258919

RESUMEN

Major histocompatibility complex (MHC) proteins are the most polymorphic and polygenic proteins in humans. They bind peptides, derived from cleavage of different pathogenic antigens, and are responsible for presenting them to T cells. The peptides recognized by the T cell receptors are denoted as epitopes and they trigger an immune response.In this chapter, we describe a docking protocol for predicting the peptide binding to a given MHC protein using the software tool GOLD. The protocol starts with the construction of a combinatorial peptide library used in the docking and ends with the derivation of a quantitative matrix (QM) accounting for the contribution of each amino acid at each peptide position.


Asunto(s)
Biblioteca de Péptidos , Péptidos , Humanos , Péptidos/química , Epítopos/metabolismo , Programas Informáticos , Unión Proteica
18.
Chem Biol Interact ; 386: 110772, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898285

RESUMEN

Having continued our recent study on the synthesis and DNase I inhibition of several monosquaramides, two new chloro-substituted pyridine squaramates were synthesized and their structure was identified by X-ray. Their inhibitory properties towards deoxyribonuclease I (DNase I) and xanthine oxidase (XO) were evaluated in vitro. 3-(((6-Chloropyridin-3-yl)methyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (compound 3a) inhibited DNase I with an IC50 value of 43.82 ± 6.51 µM, thus standing out as one of the most potent small organic DNase I inhibitors tested to date. No cytotoxicity to human tumor cell lines (HL-60, MDA-MB-231 and MCF-7) was observed for the tested compounds. In order to investigate the drug-likeness of the squaramates, the ADME profile and pharmacokinetic properties were evaluated. Molecular docking was performed to reveal the binding mode of the studied compounds on DNase I.


Asunto(s)
Desoxirribonucleasa I , Piridinas , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Piridinas/farmacología , Desoxirribonucleasa I/metabolismo , Estructura Molecular , Inhibidores Enzimáticos/química
19.
Chem Biol Interact ; 381: 110542, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37224992

RESUMEN

A library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC50 = 346.39 µM). Two compounds (5 and 29) stood out as the most potent DNase I inhibitors, with IC50 values below 100 µM. The 5-LO inhibitory properties of the investigated derivatives were also analyzed due to the importance of this enzyme in the development of neurodegenerative diseases. Compounds (12 and 29) proved to be the most prominent new 5-LO inhibitors, with IC50 values of 60 nM and 56 nM, respectively, in cell-free assay. Four compounds, including one previously (41) and three newly (12, 29 and 30) synthesized, have the ability to inhibit DNase I with IC50 values below 200 µM and 5-LO with IC50 values below 150 nM in cell-free assay. Molecular docking and molecular dynamics simulations were used to clarify DNase I and 5-LO inhibitory properties of the most potent representatives at the molecular level. The newly synthesized compound 29 (4-((4-(3-bromo-4-morpholinophenyl)thiazol-2-yl)amino)phenol) represents the most promising dual DNase I and 5-LO inhibitor, as it inhibited 5-LO in the nanomolar and DNase I in the double-digit micromolar concentration ranges. The results obtained in the present study, together with our recently published results for 4-(4-chlorophenyl)thiazol-2-amines, represent a good basis for the development of new neuroprotective therapeutics based on dual inhibition of DNase I and 5-LO.


Asunto(s)
Fármacos Neuroprotectores , Tiazoles , Animales , Bovinos , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazoles/química , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Araquidonato 5-Lipooxigenasa , Desoxirribonucleasa I , Inhibidores de la Lipooxigenasa/farmacología , Estructura Molecular
20.
Front Mol Biosci ; 9: 1066029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703920

RESUMEN

The salt bridge is the strongest non-covalent interaction in nature and is known to participate in protein folding, protein-protein interactions, and molecular recognition. However, the role of salt bridges in the context of drug design has remained not well understood. Here, we report that a common feature in the mechanism of inhibition of the N-myristoyltransferases (NMT), promising targets for the treatment of protozoan infections and cancer, is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of the enzyme. Substituting the inhibitor positively charged amine group with a neutral methylene group prevents the formation of the salt bridge and leads to a dramatic activity loss. Molecular dynamics simulations have revealed that salt bridges stabilize the NMT-ligand complexes by functioning as molecular clips that stabilize the conformation of the protein structure. As such, the creation of salt bridges between the ligands and their protein targets may find an application as a valuable tool in rational drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA