Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Vasc Interv Radiol ; 35(2): 164-172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272636

RESUMEN

Interventional immuno-oncology is making strides in locoregional therapies to address complex tumor microenvironments. Long-standing interventional radiology cancer therapies, such as tumor ablation and embolization, are being recharacterized in the context of immunotherapy. Intratumoral injections, such as those of genetically engineered or unaltered viruses, and the delivery of immune cells, antibodies, proteins, or cytokines into targeted tumors, along with advancements in delivery techniques, have produced promising results in preliminary studies, indicating their antitumor effectiveness. Emerging strategies using DNA scaffolding, polysaccharides, glycan, chitosan, and natural products are also showing promise in targeted cancer therapy. The future of interventional immuno-oncology lies in personalized immunotherapies that capitalize on individual immune profiles and tumor characteristics, along with the exploration of combination therapies. This study will review various interventional immuno-oncology strategies and emerging technologies to enhance delivery of therapeutics and response to immunotherapy.


Asunto(s)
Embolización Terapéutica , Neoplasias , Humanos , Neoplasias/terapia , Oncología Médica , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Terapia Combinada , Embolización Terapéutica/efectos adversos , Microambiente Tumoral
2.
Adv Mater ; : e2310856, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771628

RESUMEN

Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.

3.
Adv Mater ; 36(29): e2402570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678378

RESUMEN

Embolic materials currently in use for portal vein embolization (PVE) do not treat the tumor, which poses a risk for tumor progression during the interval between PVE and surgical resection. Here, is developed an ionic-liquid-based embolic material (LEAD) for portal vein embolization, liver ablation, and drug delivery. LEAD is optimized and characterized for diffusivity, X-ray visibility, and cytotoxicity. In the porcine renal embolization model, LEAD delivered from the main renal artery reached vasculature down to 10 microns with uniform tissue ablation and delivery of small and large therapeutics. In non-survival and survival porcine experiments, successful PVE is achieved in minutes, leading to the expected chemical segmentectomy, and delivery of a large protein drug (i.e., Nivolumab) with LEAD. In cholangiocarcinoma mouse tumor models and in ex vivo human tumors, LEAD consistently achieved an effective ablation and wide drug distribution. Furthermore, various strains of drug-resistant patient-derived bacteria showed significant susceptibility to LEAD, suggesting that LEAD may also prevent infectious complications resulting from tissue ablation. With its capabilities to embolize, ablate, and deliver therapeutics, ease of use, and a high safety profile demonstrated in animal studies, LEAD offers a potential alternative to tumor ablation with or without PVE for FLR growth.


Asunto(s)
Embolización Terapéutica , Líquidos Iónicos , Vena Porta , Animales , Ratones , Humanos , Embolización Terapéutica/métodos , Porcinos , Líquidos Iónicos/química , Línea Celular Tumoral , Catéteres , Conductos Biliares , Neoplasias de los Conductos Biliares/patología
4.
Sci Transl Med ; 16(754): eadn7982, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959326

RESUMEN

Benign prostatic hyperplasia and prostate cancer are often associated with lower urinary tract symptoms, which can severely affect patient quality of life. To address this challenge, we developed and optimized an injectable compound, prostate ablation and drug delivery agent (PADA), for percutaneous prostate tissue ablation and concurrently delivered therapeutic agents. PADA is an ionic liquid composed of choline and geranic acid mixed with anticancer therapeutics and a contrast agent. The PADA formulation was optimized for mechanical properties compatible with hand injection, diffusion capability, cytotoxicity against prostate cells, and visibility of an x-ray contrast agent. PADA also exhibited antibacterial properties against highly resistant clinically isolated bacteria in vitro. Ultrasound-guided injection, dispersion of PADA in the tissue, and tissue ablation were tested ex vivo in healthy porcine, canine, and human prostates and in freshly resected human tumors. In vivo testing was conducted in a murine subcutaneous tumor model and in the canine prostate. In all models, PADA decreased the number of viable cells in the region of dispersion and supported the delivery of nivolumab throughout a portion of the tissue. In canine survival experiments, there were no adverse events and no impact on urination. The injection approach was easy to perform under ultrasound guidance and produced a localized effect with a favorable safety profile. These findings suggest that PADA is a promising therapeutic prostate ablation strategy to treat lower urinary tract symptoms.


Asunto(s)
Sistemas de Liberación de Medicamentos , Líquidos Iónicos , Próstata , Animales , Masculino , Perros , Humanos , Próstata/efectos de los fármacos , Próstata/patología , Líquidos Iónicos/química , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Porcinos , Inyecciones , Línea Celular Tumoral , Técnicas de Ablación/métodos
5.
Front Physiol ; 12: 714157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512387

RESUMEN

Supraphysiological shear stresses (SSs) induce irreversible impairments of red blood cell (RBC) deformability, overstretching of RBC membrane, or fragmentation of RBCs that causes free hemoglobin to be released into plasma, which may lead to anemia. The magnitude and exposure tisme of the SSs are two critical parameters that determine the hemolytic threshold of a healthy RBC. However, impairments in the membrane stability of damaged cells reduce the hemolytic threshold and increase the susceptibility of the cell membrane to supraphysiological SSs, leading to cell fragmentation. The severity of the RBC fragmentation as a response to the mechanical damage and the critical SS levels causing fragmentation are not previously defined. In this study, we investigated the RBC mechanical damage in oxidative stress (OS) and metabolic depletion (MD) models by applying supraphysiological SSs up to 100 Pa by an ektacytometer (LORRCA MaxSis) and then assessed RBC deformability. Next, we examined hemolysis and measured RBC volume and count by Multisizer 3 Coulter Counter to evaluate RBC fragmentation. RBC deformability was significantly impaired in the range of 20-50 Pa in OS compared with healthy controls (p < 0.05). Hemolysis was detected at 90-100 Pa SS levels in MD and all applied SS levels in OS. Supraphysiological SSs increased RBC volume in both the damage models and the control group. The number of fragmented cells increased at 100 Pa SS in the control and MD and at all SS levels in OS, which was accompanied by hemolysis. Fragmentation sensitivity index increased at 50-100 Pa SS in the control, 100 Pa SS in MD, and at all SS levels in OS. Therefore, we propose RBC fragmentation as a novel sensitivity index for damaged RBCs experiencing a mechanical trauma before they undergo fragmentation. Our approach for the assessment of mechanical risk sensitivity by RBC fragmentation could facilitate the close monitoring of shear-mediated RBC response and provide an effective and accurate method for detecting RBC damage in mechanical circulatory assist devices used in routine clinical procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA