Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Exp Bot ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38894654

RESUMEN

To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops: rice, maize and wheat, and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including Gene-Editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.

2.
Development ; 147(20)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33028608

RESUMEN

The phytohormone cytokinin regulates diverse aspects of plant growth and development. Our understanding of the metabolism and perception of cytokinin has made great strides in recent years, mostly from studies of the model dicot Arabidopsis Here, we employed a CRISPR/Cas9-based approach to disrupt a subset of cytokinin histidine kinase (HK) receptors in rice (Oryza sativa) in order to explore the role of cytokinin in a monocot species. In hk5 and hk6 single mutants, the root growth, leaf width, inflorescence architecture and/or floral development were affected. The double hk5 hk6 mutant showed more substantial defects, including severely reduced root and shoot growth, a smaller shoot apical meristem, and an enlarged root cap. Flowering was delayed in the hk5 hk6 mutant and the panicle was significantly reduced in size and infertile due to multiple defects in floral development. The hk5 hk6 mutant also exhibited a severely reduced cytokinin response, consistent with the developmental phenotypes arising from a defect in cytokinin signaling. These results indicate that HK5 and HK6 act as cytokinin receptors, with overlapping functions to regulate diverse aspects of rice growth and development.


Asunto(s)
Citocininas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Citocininas/farmacología , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Mutación/genética , Oryza/anatomía & histología , Oryza/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
3.
Plant Physiol ; 188(1): 56-69, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718789

RESUMEN

Studying the developmental genetics of plant organs requires following gene expression in specific tissues. To facilitate this, we have developed dual expression anatomy lines, which incorporate a red plasma membrane marker alongside a fluorescent reporter for a gene of interest in the same vector. Here, we adapted the GreenGate cloning vectors to create two destination vectors showing strong marking of cell membranes in either the whole root or specifically in the lateral roots. This system can also be used in both embryos and whole seedlings. As proof of concept, we follow both gene expression and anatomy in Arabidopsis (Arabidopsis thaliana) during lateral root organogenesis for a period of over 24 h. Coupled with the development of a flow cell and perfusion system, we follow changes in activity of the DII auxin sensor following application of auxin.


Asunto(s)
Arabidopsis/genética , Arabidopsis/ultraestructura , Membrana Celular/ultraestructura , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/ultraestructura , Ultrasonografía/métodos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros
4.
J Exp Bot ; 74(17): 5181-5197, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37347829

RESUMEN

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.


Asunto(s)
Oryza , Termotolerancia , Oryza/fisiología , Termotolerancia/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fotosíntesis/genética , Clorofila
6.
J Exp Bot ; 72(2): 747-756, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064808

RESUMEN

Wheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined. We studied the depth distribution of roots of six wheat varieties and explored their relationship with soil macroporosity from samples with the field structure preserved. Undisturbed soil cores (to a depth of 100 cm) were collected from the field and then non-destructively imaged using X-ray computed tomography (at a spatial resolution of 90 µm) to quantify soil macropore structure and root number density (the number of roots cm-2 within a horizontal cross-section of a soil core). Soil macroporosity changed significantly with depth but not between the different wheat lines. There was no significant difference in root number density between wheat varieties. In the subsoil, wheat roots used macropores, especially biopores (i.e. former root or earthworm channels) to grow into deeper layers. Soil macroporosity explained 59% of the variance in root number density. Our data suggested that the development of the wheat root system in the field was more affected by the soil macropore system than by genotype. On this basis, management practices which enhance the porosity of the subsoil may therefore be an effective strategy to improve deep rooting of wheat.


Asunto(s)
Suelo , Triticum , Genotipo , Raíces de Plantas , Porosidad
7.
Plant Cell Environ ; 43(1): 235-245, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600410

RESUMEN

Deep rooting is critical for access to water and nutrients found in subsoil. However, damage to soil structure and the natural increase in soil strength with depth, often impedes root penetration. Evidence suggests that roots use macropores (soil cavities greater than 75 µm) to bypass strong soil layers. If roots have to exploit structures, a key trait conferring deep rooting will be the ability to locate existing pore networks; a trait called trematotropism. In this study, artificial macropores were created in repacked soil columns at bulk densities of 1.6 g cm-3 and 1.2 g cm-3 , representing compact and loose soil. Near isogenic lines of wheat, Rht-B1a and Rht-B1c, were planted and root-macropore interactions were visualized and quantified using X-ray computed tomography. In compact soil, 68.8% of root-macropore interactions resulted in pore colonization, compared with 12.5% in loose soil. Changes in root growth trajectory following pore interaction were also quantified, with 21.0% of roots changing direction (±3°) in loose soil compared with 76.0% in compact soil. These results indicate that colonization of macropores is an important strategy of wheat roots in compacted subsoil. Management practices to reduce subsoil compaction and encourage macropore formation could offer significant advantage in helping wheat roots penetrate deeper into subsoil.


Asunto(s)
Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Triticum/crecimiento & desarrollo , Fenotipo , Poaceae , Tomografía por Rayos X , Reino Unido , Agua
8.
Sensors (Basel) ; 20(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545168

RESUMEN

High-throughput plant phenotyping in controlled environments (growth chambers and glasshouses) is often delivered via large, expensive installations, leading to limited access and the increased relevance of "affordable phenotyping" solutions. We present two robot vectors for automated plant phenotyping under controlled conditions. Using 3D-printed components and readily-available hardware and electronic components, these designs are inexpensive, flexible and easily modified to multiple tasks. We present a design for a thermal imaging robot for high-precision time-lapse imaging of canopies and a Plate Imager for high-throughput phenotyping of roots and shoots of plants grown on media plates. Phenotyping in controlled conditions requires multi-position spatial and temporal monitoring of environmental conditions. We also present a low-cost sensor platform for environmental monitoring based on inexpensive sensors, microcontrollers and internet-of-things (IoT) protocols.


Asunto(s)
Monitoreo del Ambiente , Plantas , Fenotipo
9.
J Exp Bot ; 68(17): 4969-4981, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29048563

RESUMEN

Root architecture impacts water and nutrient uptake efficiency. Identifying exactly which root architectural properties influence these agronomic traits can prove challenging. In this paper, approximately 300 wheat (Triticum aestivum) plants were divided into four groups using two binary classifications, high versus low nitrogen uptake efficiency (NUpE), and high versus low nitrate in the growth medium. The root system architecture for each wheat plant was captured using 16 quantitative variables. The multivariate analysis tool, linear discriminant analysis, was used to construct composite variables, each a linear combination of the original variables, such that the score of the plants on the new variables showed the maximum between-group variability. The results show that the distribution of root-system architecture traits differs between low- and high-NUpE plants and, less strongly, between low-NUpE plants grown on low versus high nitrate media.


Asunto(s)
Nitrógeno/metabolismo , Raíces de Plantas/anatomía & histología , Triticum/anatomía & histología , Análisis Discriminante , Nitratos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
10.
Plant Physiol ; 166(2): 538-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25136060

RESUMEN

Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.


Asunto(s)
Raíces de Plantas/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Morfogénesis , Raíces de Plantas/crecimiento & desarrollo , Terminología como Asunto
11.
J Exp Bot ; 66(8): 2283-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25740921

RESUMEN

Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Poliploidía , Sitios de Carácter Cuantitativo/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Triticum/crecimiento & desarrollo , Triticum/genética , Cromosomas de las Plantas/genética , Nitrógeno/metabolismo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Carácter Cuantitativo Heredable
12.
Plant Physiol ; 162(4): 1802-14, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23766367

RESUMEN

We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist's satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav's core representation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Raíces de Plantas/anatomía & histología , Programas Informáticos , Algoritmos , Arabidopsis/anatomía & histología , Brassica napus/anatomía & histología , Meristema/anatomía & histología , Oryza/anatomía & histología , Raíces de Plantas/fisiología , Semillas/crecimiento & desarrollo , Triticum/anatomía & histología , Interfaz Usuario-Computador
13.
Elife ; 122024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294329

RESUMEN

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Asunto(s)
Arabidopsis , Pennisetum , Sequías , Pennisetum/genética , Glutarredoxinas , Estudio de Asociación del Genoma Completo , Productos Agrícolas
14.
Curr Biol ; 33(9): 1795-1802.e4, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36990089

RESUMEN

Organ loss occurs frequently during plant and animal evolution. Sometimes, non-functional organs are retained through evolution. Vestigial organs are defined as genetically determined structures that have lost their ancestral (or salient) function.1,2,3 Duckweeds, an aquatic monocot family, exhibit both these characteristics. They possess a uniquely simple body plan, variably across five genera, two of which are rootless. Due to the existence of closely related species with a wide diversity in rooting strategies, duckweed roots represent a powerful system for investigating vestigiality. To explore this, we employed a panel of physiological, ionomic, and transcriptomic analyses, with the main goal of elucidating the extent of vestigiality in duckweed roots. We uncovered a progressive reduction in root anatomy as genera diverge and revealed that the root has lost its salient ancestral function as an organ required for supplying nutrients to the plant. Accompanying this, nutrient transporter expression patterns have lost the stereotypical root biased localization observed in other plant species. While other examples of organ loss such as limbs in reptiles4 or eyes in cavefish5 frequently display a binary of presence/absence, duckweeds provide a unique snapshot of an organ with varying degrees of vestigialization in closely related neighbors and thus provide a unique resource for exploration of how organs behave at different stages along the process of loss.


Asunto(s)
Araceae , Nutrientes , Araceae/genética , Raíces de Plantas/fisiología
15.
Bio Protoc ; 11(24): e4252, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35087914

RESUMEN

Roots are the prime organ for nutrient and water uptake and are therefore fundamental to the growth and development of plants. However, physical challenges of a heterogeneous environment and diverse edaphic stresses affect root growth in soil. Compacted soil is a serious global problem, causing inhibition of root elongation, which reduces surface area and impacts resource foraging. Visualisation and quantification of roots in soil is difficult due to this growth substrate's opaque nature; however, non-destructive imaging technologies are now becoming more widely available to plant and soil scientists working to address this challenge. We have recently developed an integrated approach, combining X-ray Computed Tomography (X-ray CT) and confocal microscopy to image roots grown in compacted soil conditions from a plant to a cellular scale. The method is suited to visualize cellular responses of root tips grown in both non-compacted and compacted soils. This protocol presents a fully integrated workflow, including soil column preparation, creation of compaction conditions, plant growth, imaging, and quantification of root adaptive responses at a cellular scale.

16.
Front Microbiol ; 12: 735022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594317

RESUMEN

Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the trajectories of such changes are not clear. We assessed microbial communities using phospholipid fatty acid profiling, metabarcoding, CO2 emissions, and functional gene microarrays in a decade-long C deprivation field experiment. We also assessed changes in a range of soil physicochemical properties, including using X-ray Computed Tomography imaging to assess differences in soil structure. Two sets of soils were deprived of C inputs by removing plant inputs for 10 years and 1 year, respectively. We found a reduction in diversity measures, after 10 years of C deprivation, which was unexpected based on previous research. Fungi appeared to be most impacted, likely due to competition for scarce resources after exhausting the available plant material. This suggestion was supported by evidence of bioindicator taxa in non-vegetated soils that may directly compete with or consume fungi. There was also a reduction in copies of most functional genes after 10 years of C deprivation, though gene copies increased for phytase and some genes involved in decomposing recalcitrant C and methanogenesis. Additionally, soils under C deprivation displayed expected reductions in pH, organic C, nitrogen, and biomass as well as reduced mean pore size, especially in larger pores. However, pore connectivity increased after 10 years of C deprivation contrary to expectations. Our results highlight concurrent collapse of soil structure and biodiversity following long-term C deprivation. Overall, this study shows the negative trajectory of continuous C deprivation and loss of organic matter on a wide range of soil quality indicators and microorganisms.

17.
Plant Methods ; 15: 109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31548849

RESUMEN

BACKGROUND: As yields of major crops such as wheat (T. aestivum) have begun to plateau in recent years, there is growing pressure to efficiently phenotype large populations for traits associated with genetic advancement in yield. Photosynthesis encompasses a range of steady state and dynamic traits that are key targets for raising Radiation Use Efficiency (RUE), biomass production and grain yield in crops. Traditional methodologies to assess the full range of responses of photosynthesis, such a leaf gas exchange, are slow and limited to one leaf (or part of a leaf) per instrument. Due to constraints imposed by time, equipment and plant size, photosynthetic data is often collected at one or two phenological stages and in response to limited environmental conditions. RESULTS: Here we describe a high throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in excised leaves under controlled gaseous conditions. When measured throughout the day, no significant differences (P > 0.081) were observed between the responses of excised and intact leaves. Using excised leaves, the response of three cultivars of T. aestivum to a user-defined dynamic lighting regime was examined. Cultivar specific differences were observed for maximum PSII efficiency (F v'/F m'-P < 0.01) and PSII operating efficiency (F q'/F m'-P = 0.04) under both low and high light. In addition, the rate of induction and relaxation of non-photochemical quenching (NPQ) was also cultivar specific. A specialised imaging chamber was designed and built in-house to maintain gaseous conditions around excised leaf sections. The purpose of this is to manipulate electron sinks such as photorespiration. The stability of carbon dioxide (CO2) and oxygen (O2) was monitored inside the chambers and found to be within ± 4.5% and ± 1% of the mean respectively. To test the chamber, T. aestivum 'Pavon76' leaf sections were measured under at 20 and 200 mmol mol-1 O2 and ambient [CO2] during a light response curve. The F v'/F m'was significantly higher (P < 0.05) under low [O2] for the majority of light intensities while values of NPQ and the proportion of open PSII reaction centers (qP) were significantly lower under > 130 µmol m-2 s-1 photosynthetic photon flux density (PPFD). CONCLUSIONS: Here we demonstrate the development of a high-throughput (> 500 samples day-1) method for phenotyping photosynthetic and photo-protective parameters in a dynamic light environment. The technique exploits chlorophyll fluorescence imaging in a specifically designed chamber, enabling controlled gaseous environment around leaf sections. In addition, we have demonstrated that leaf sections do not different from intact plant material even > 3 h after sampling, thus enabling transportation of material of interest from the field to this laboratory based platform. The methodologies described here allow rapid, custom screening of field material for variation in photosynthetic processes.

18.
Plant Sci ; 282: 11-13, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31003606

RESUMEN

Plant roots have major roles in plant anchorage, resource acquisition and offer environmental benefits including carbon sequestration and soil erosion mitigation. As such, the study of root system architecture, anatomy and functional properties is of crucial interest to plant breeding, with the aim of sustainable yield production and environmental stewardship. Due to the importance of the root system studies, there is a need for clarification of terms and concepts in the root phenotyping community. In particular in this contribution, we advocate for the use of a reference naming system (ontologies) for roots and root phenes. Such uniformity would not only allow better understanding of research results, but would also enable a better sharing of data. In addition, we highlight the need to incorporate the concept of plasticity in breeding programs, as it is an essential component of root system development in heterogeneous environments.


Asunto(s)
Fitomejoramiento , Raíces de Plantas/fisiología , Nitrógeno/metabolismo , Fenotipo
19.
Curr Opin Biotechnol ; 55: 1-8, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30031961

RESUMEN

Major increases in crop yield are required to keep pace with population growth and climate change. Improvements to the architecture of crop roots promise to deliver increases in water and nutrient use efficiency but profiling the root phenome (i.e. its structure and function) represents a major bottleneck. We describe how advances in imaging and sensor technologies are making root phenomic studies possible. However, methodological advances in acquisition, handling and processing of the resulting 'big-data' is becoming increasingly important. Advances in automated image analysis approaches such as Deep Learning promise to transform the root phenotyping landscape. Collectively, these innovations are helping drive the selection of the next-generation of crops to deliver real world impact for ongoing global food security efforts.


Asunto(s)
Raíces de Plantas/anatomía & histología , Imagenología Tridimensional , Fenotipo , Programas Informáticos , Tomografía
20.
Gigascience ; 8(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31702012

RESUMEN

BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentation and feature extraction of plant roots from images presents a significant computer vision challenge. Root images contain complicated structures, variations in size, background, occlusion, clutter and variation in lighting conditions. We present a new image analysis approach that provides fully automatic extraction of complex root system architectures from a range of plant species in varied imaging set-ups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously manual and semi-automatic feature extraction with an extremely deep multi-task convolutional neural network architecture. The network also locates seeds, first order and second order root tips to drive a search algorithm seeking optimal paths throughout the image, extracting accurate architectures without user interaction. RESULTS: We develop and train a novel deep network architecture to explicitly combine local pixel information with global scene information in order to accurately segment small root features across high-resolution images. The proposed method was evaluated on images of wheat (Triticum aestivum L.) from a seedling assay. Compared with semi-automatic analysis via the original RootNav tool, the proposed method demonstrated comparable accuracy, with a 10-fold increase in speed. The network was able to adapt to different plant species via transfer learning, offering similar accuracy when transferred to an Arabidopsis thaliana plate assay. A final instance of transfer learning, to images of Brassica napus from a hydroponic assay, still demonstrated good accuracy despite many fewer training images. CONCLUSIONS: We present RootNav 2.0, a new approach to root image analysis driven by a deep neural network. The tool can be adapted to new image domains with a reduced number of images, and offers substantial speed improvements over semi-automatic and manual approaches. The tool outputs root architectures in the widely accepted RSML standard, for which numerous analysis packages exist (http://rootsystemml.github.io/), as well as segmentation masks compatible with other automated measurement tools. The tool will provide researchers with the ability to analyse root systems at larget scales than ever before, at a time when large scale genomic studies have made this more important than ever.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA