Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(29): 9928-9932, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31059175

RESUMEN

We present the synthesis of metal nanowires in a multiplexed device configuration using single-walled carbon nanotubes (SWNTs) as nanoscale vector templates. The SWNT templates control the dimensionality of the wires, allowing precise control of their size, shape, and orientation; moreover, a solution-processable approach enables their linear deposition between specific electrode pairs in electronic devices. Electrical characterization demonstrated the successful fabrication of metal nanowire electronic devices, while multiscale characterization of the different fabrication steps revealed details of the structure and charge transfer between the material encapsulated and the carbon nanotube. Overall the strategy presented allows facile, low-cost, and direct synthesis of multiplexed metal nanowire devices for nanoelectronic applications.

2.
Small ; 13(16)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186366

RESUMEN

A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.

3.
Nanoscale ; 10(42): 19678-19683, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30328464

RESUMEN

Graphene nanoflakes and CdSe/ZnS quantum dots were covalently linked in environmentally friendly aqueous solution. Raman spectroscopy and photoluminescence studies, both in solution and on surfaces at the single nanohybrid level, showed evidence of charge transfer between the two nanostructures. The nanohybrids were further incorporated into solar cell devices, demonstrating their potential as light harvesting assemblies.

4.
Adv Sci (Weinh) ; 5(10): 1800596, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30356926

RESUMEN

Herein a strategy is presented for the assembly of both static and stimuli-responsive single-molecule heterostructures, where the distance and electronic coupling between an individual functional nanomoiety and a carbon nanostructure are tuned via the use of DNA linkers. As proof of concept, the formation of 1:1 nanohybrids is controlled, where single quantum dots (QDs) are tethered to the ends of individual carbon nanotubes (CNTs) in solution with DNA interconnects of different lengths. Photoluminescence investigations-both in solution and at the single-hybrid level-demonstrate the electronic coupling between the two nanostructures; notably this is observed to progressively scale, with charge transfer becoming the dominant process as the linkers length is reduced. Additionally, stimuli-responsive CNT-QD nanohybrids are assembled, where the distance and hence the electronic coupling between an individual CNT and a single QD are dynamically modulated via the addition and removal of potassium (K+) cations; the system is further found to be sensitive to K+ concentrations from 1 pM to 25 × 10-3 m. The level of control demonstrated here in modulating the electronic coupling of reconfigurable single-molecule heterostructures, comprising an individual functional nanomoiety and a carbon nanoelectrode, is of importance for the development of tunable molecular optoelectronic systems and devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA