Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Chem Soc Rev ; 53(1): 163-203, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38019124

RESUMEN

Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.

2.
Angew Chem Int Ed Engl ; 63(28): e202405498, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651652

RESUMEN

Three new nitrides La3MN5 (M=Cr, Mn, and Mo) have been synthesized using a high pressure azide route. These are the first examples of ternary Cs3CoCl5-type nitrides, and show that this (MN4)NLa3 antiperovskite structure type may be used to stabilise high oxidation-state transition metals in tetrahedral molecular [MN4]n- nitridometallate anions. Magnetic measurements confirm that Cr and Mo are in the M6+ state, but the M=Mn phase has an anomalously small paramagnetic moment and large cell volume. Neutron powder diffraction data are fitted using an anion-excess La3MnN5.30 model (space group I4/mcm, a=6.81587(9) Šand c=11.22664(18) Šat 200 K) in which Mn is close to the +7 state. Excess-anion incorporation into Cs3CoCl5-type materials has not been previously reported, and this or other substitution mechanisms may enable many other high oxidation state transition metal nitrides to be prepared.

3.
Angew Chem Int Ed Engl ; : e202404374, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726699

RESUMEN

Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC=nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.

4.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20220329, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37634529

RESUMEN

Sodium azide (NaN3) is a versatile nitrogen source that can be used for the synthesis of new nitrides under high-pressure and temperature conditions. Reactions between lanthanum nitride (LaN) and sodium azide (NaN3) at 800°C under 8 GPa pressure have led to the discovery of two defect rocksalt phases which are the first reported ternaries in the La-Na-N system. Preliminary structure assignments have been made based on fits to powder X-ray diffraction profiles. One phase is La1-xNa3xN with vacancies at octahedral La sites and interstitial tetrahedral Na cations. This phase has a tetragonally distorted rocksalt structure (space group I4[Formula: see text]mmm, a = 3.8704(2) and c = 5.2098(3) Å for nominal x = 0.10) and the distortion decreases with increasing Na content (space group I4[Formula: see text]mmm, a = 3.8060(2) Å, c = 5.2470(3) Å for nominal x = 0.14), further giving a cubic phase (a = 5.3055(2) Å) for nominal x = 0.25. This coexists with another cubic [Formula: see text] phase (a = 5.1561 (5) Å), tentatively identified as rocksalt 'NaN1/3' stabilized by a small amount of La; NaLayN(1+3y)/3 with y ≈ 1%. These initial investigations reveal that the high-pressure La-Na-N phase diagram may be rich in defect rocksalt-type materials although further work using neutron diffraction will be needed to confirm the structures. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

5.
Chem Soc Rev ; 51(13): 5351-5364, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35735127

RESUMEN

Chemical pressure, a strange but familiar concept, is a lattice internal force caused by lattice strain with chemical modifications and arouses great interest due to its diversity and efficiency to synthesize new compounds and tune functional materials. Different from physical pressure loaded by an external force that is positive, chemical pressure can be either positive or negative (contract a lattice or expand it), often through flexible and mild chemical synthesis strategies, which are particularly important as a degree of freedom to manipulate material behaviors. In this tutorial review, we summarize the features of chemical pressure as a methodology and demonstrate its role in synthesizing and discovering some typical magnetically, electrically, and thermally responsive functional materials. The measure of chemical pressure using experimental lattice strain and elastic modulus was proposed, which can be used for quantitative descriptions of the correlation between lattice distortion and properties. From a lattice strain point of view, we classify chemical pressure into different categories: (i) chemical substitution, (ii) chemical intercalation/de-intercalation, (iii) size effect, and (iv) interface constraint, etc. Chemical pressure affects chemical bonding and rationalizes the crystal structure by modifying the electronic structure of solids, regulating the lattice symmetry, local structure, phonon structure effects etc., emerging as a general and effective method for synthesizing new compounds and tuning functional materials.

6.
Small ; 18(17): e2200730, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35324078

RESUMEN

Atomically dispersed CoNC is a promising material for H2 O2 selective electrosynthesis via a two-electron oxygen reduction reaction. However, the performance of typical CoNC materials with routine CoN4 active center is insufficient and needs to be improved further. This can be done by fine-tuning its atomic coordination configuration. Here, a single-atom electrocatalyst (Co/NC) is reported that comprises a specifically penta-coordinated CoNC configuration (OCoN2 C2 ) with Co center coordinated by two nitrogen atoms, two carbon atoms, and one oxygen atom. Using a combination of theoretical predictions and experiments, it is confirmed that the unique atomic structure slightly increases the charge state of the cobalt center. This optimizes the adsorption energy towards *OOH intermediate, and therefore favors the two-electron ORR relevant for H2 O2 electrosynthesis. In neutral solution, the as-synthesized Co/NC exhibits a selectivity of over 90% over a potential ranging from 0.36 to 0.8 V, with a turnover frequency value of 11.48 s-1 ; thus outperforming the state-of-the-art carbon-based catalysts.

7.
Angew Chem Int Ed Engl ; 61(27): e202203062, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35358356

RESUMEN

Cation ordering in solids is important for controlling physical properties and leads to ilmenite (FeTiO3 ) and LiNbO3 type derivatives of the corundum structure, with ferroelectricity resulting from breaking of inversion symmetry in the latter. However, a hypothetical third ABO3 derivative with R32 symmetry has never been observed. Here we show that Co2 InSbO6 recovered from high pressure has a new, ordered-R32 A2 BCO6 variant of the corundum structure. Co2 InSbO6 is also remarkable for showing two cation redistributions, to (Co0.5 In0.5 )2 CoSbO6 and then Co2 InSbO6 variants of the ordered-LiNbO3 A2 BCO6 structure on heating. The cation distributions change magnetic properties as the final ordered-LiNbO3 product has a sharp ferrimagnetic transition unlike the initial ordered-R32 phase. Future syntheses of metastable corundum derivatives at pressure are likely to reveal other cation-redistribution pathways, and may enable ABO3 materials with the R32 structure to be discovered.

8.
Angew Chem Int Ed Engl ; 61(40): e202209497, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35939356

RESUMEN

Cation ordering in ABX3 perovskites is important to structural, physical and chemical properties. Here we report discovery of CaCuFeReO6 with the tetragonal AA'BB'O6 double double perovskite structure that was previously only reported for A'=Mn compositions. CaCuFeReO6 occurs in the same phase field as CaCu3 Fe2 Re2 O12 demonstrating that different A-cation ordered peroskites may be obtained in the same chemical system. CaCuFeReO6 has ferrimagnetic order of Fe, Re and Cu spins below TC =567 K, in contrast to Mn analogues where the Mn spins order separately at much lower temperatures. The magnetoresistance of CaCuFeReO6 displays low-field "butterfly" hysteresis with an unusual change from negative to positive values as field increases. Many more AA'BB'O6 double double perovskites may be accessible for A'=Cu and other divalent transition metals at high pressure, so the presently known phases likely represent only the "tip of the iceberg" for this family.

9.
Nat Mater ; 19(3): 282-286, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31740792

RESUMEN

Platinum (Pt)-based materials are important components of microelectronic sensors, anticancer drugs, automotive catalytic converters and electrochemical energy conversion devices1. Pt is currently the most common catalyst used for the oxygen reduction reaction (ORR) in devices such as fuel cells and metal-air batteries2,3, although a scalable use is restricted by the scarcity, cost and vulnerability to poisoning of Pt (refs 4-6). Here we show that nanoparticulate zirconium nitride (ZrN) can replace and even surpass Pt as a catalyst for ORR in alkaline environments. As-synthesized ZrN nanoparticles (NPs) exhibit a high oxygen reduction performance with the same activity as that of a widely used Pt-on-carbon (Pt/C) commercial catalyst. Both materials show the same half-wave potential (E1/2 = 0.80 V) and ZrN has a higher stability (ΔE1/2 = -3 mV) than the Pt/C catalyst (ΔE1/2 = -39 mV) after 1,000 ORR cycles in 0.1 M KOH. ZrN is also shown to deliver a greater power density and cyclability than Pt/C in a zinc-air battery. Replacement of Pt by ZrN is likely to reduce costs and promote the usage of electrochemical energy devices, and ZrN may also be useful in other catalytic systems.

10.
Angew Chem Int Ed Engl ; 60(41): 22260-22264, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34355842

RESUMEN

While halide and oxide perovskites are numerous and many display outstanding properties, ABN3 perovskite nitrides are extremely rare due to synthetic challenges arising from the low chemical potential of nitrogen and a tendency to form low-coordination nitridometallate anions. We report the preparation of a perovskite nitride LaReN3 through azide-mediated oxidation at high pressure. High-resolution synchrotron diffraction shows that LaReN3 has a low-symmetry, triclinic, perovskite superstructure resulting from orbital ordering with strong spin-orbit coupling distortions. Topotactic reduction of LaReN3 above 500 °C leads to layered tetragonal LaReN2 via a probable LaReN2.5 intermediate, which is the first reported example of nitride defect perovskites. Magnetisation and conductivity measurements indicate that LaReN3 and LaReN2 are both metallic solids. The two chemical approaches presented are expected to lead to new classes of ABN3 and defect ABN3-x nitride perovskite materials.

11.
Angew Chem Int Ed Engl ; 60(41): 22248-22252, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34369645

RESUMEN

Control of cation ordering in ABX3 perovskites is important to structural, physical and chemical properties. Here we show that thermal transformations of AA'BB'O6 double double perovskites, where both A and B sites have 1:1 cation order, to (A0.5 A'0.5 )2 BB'O6 double perovskites with fully disordered A/A' cations can be achieved under pressure in CaMnMnWO6 and SmMnMnTaO6 , enabling both polymorphs of each material to be recovered. This leads to a dramatic switch of magnetic properties from ferrimagnetic order in double double perovskite CaMnMnWO6 to spin glass behaviour in the highly frustrated double perovskite polymorph. Comparison of double double and double perovskite polymorphs of other materials will enable effects of cation order and disorder on other properties such as ferroelectricity and conductivity to be explored.

12.
Angew Chem Int Ed Engl ; 60(12): 6561-6566, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33354797

RESUMEN

Semiconducting metal oxides (SMOXs) are used widely for gas sensors. However, the effect of ambient humidity on the baseline and sensitivity of the chemiresistors is still a largely unsolved problem, reducing sensor accuracy and causing complications for sensor calibrations. Presented here is a general strategy to overcome water-sensitivity issues by coating SMOXs with a hydrophobic polymer separated by a metal-organic framework (MOF) layer that preserves the SMOX surface and serves a gas-selective function. Sensor devices using these nanoparticles display near-constant responses even when humidity is varied across a wide range [0-90 % relative humidity (RH)]. Furthermore, the sensor delivers notable performance below 20 % RH whereas other water-resistance strategies typically fail. Selectivity enhancement and humidity-independent sensitivity are concomitantly achieved using this approach. The reported tandem coating strategy is expected to be relevant for a wide range of SMOXs, leading to a new generation of gas sensors with excellent humidity-resistant performance.

13.
J Am Chem Soc ; 142(12): 5731-5741, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32083872

RESUMEN

Spin state transitions and intermetallic charge transfers can essentially change material structural and physical properties while excluding external chemical doping. However, these two effects have rarely been found to occur sequentially in a specific material. In this article, we show the realization of these two phenomena in a perovskite oxide PbCoO3 with a simple ABO3 composition under high pressure. PbCoO3 possesses a peculiar A- and B-site ordered charge distribution Pb2+Pb4+3Co2+2Co3+2O12 with insulating behavior at ambient conditions. The high spin Co2+ gradually changes to low spin with increasing pressure up to about 15 GPa, leading to an anomalous increase of resistance magnitude. Between 15 and 30 GPa, the intermetallic charge transfer occurs between Pb4+ and Co2+ cations. The accumulated charge-transfer effect triggers a metal-insulator transition as well as a first-order structural phase transition toward a Tetra.-I phase at the onset of ∼20 GPa near room temperature. On further compression over 30 GPa, the charge transfer completes, giving rise to another first-order structural transformation toward a Tetra.-II phase and the reentrant electrical insulating behavior.

14.
Inorg Chem ; 59(1): 343-349, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31820944

RESUMEN

High-pressure, high-temperature reaction conditions can be useful to stabilize metastable polymorphs of complex transition metal oxides. We successfully prepare a new defect pyrochlore Pb2FeTeO6.5 with B-site disordered Fe and Te cations under ambient conditions. Treatment of this material under 8 GPa and 950 °C results in a reductive transformation into the B-site cation-ordered double perovskite Pb2FeTeO6. Mössbauer and EELS spectroscopy confirm the iron cations are in the +3 oxidation state in both phases indicating that this transformation proceeds via reduction of the tellurium cations under apparently oxidizing conditions. This reaction demonstrates that for a suitably chosen system, it is possible to carry out chemical reactions under pressure in unexpected ways.

15.
Angew Chem Int Ed Engl ; 59(41): 18036-18041, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608085

RESUMEN

The oxygen evolution reaction (OER) is key to renewable energy technologies such as water electrolysis and metal-air batteries. However, the multiple steps associated with proton-coupled electron transfer result in sluggish OER kinetics and catalysts are required. Here we demonstrate that a novel nitride, Ni2 Mo3 N, is a highly active OER catalyst that outperforms the benchmark material RuO2 . Ni2 Mo3 N exhibits a current density of 10 mA cm-2 at a nominal overpotential of 270 mV in 0.1 m KOH with outstanding catalytic cyclability and durability. Structural characterization and computational studies reveal that the excellent activity stems from the formation of a surface-oxide-rich activation layer (SOAL). Secondary Mo atoms on the surface act as electron pumps that stabilize oxygen-containing species and facilitate the continuity of the reactions. This discovery will stimulate the further development of ternary nitrides with oxide surface layers as efficient OER catalysts for electrochemical energy devices.

16.
J Am Chem Soc ; 140(2): 636-641, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29258310

RESUMEN

The semivalent oxyphosphate V2OPO4 is found to have long-range V2+/V3+ charge ordering up to 605 K where a monoclinic to tetragonal structural transition and a switch from positive to negative thermal expansion are observed. V-V bonding within orbital polymer chains is proposed as the key factor in the novel switch of thermal expansion behavior, as loss of V-V bonding enables transverse oxygen motions to dominate the thermal expansion at high temperatures. Ferrimagnetic order of V2+ spin up and V3+ spin down states is observed below a magnetic ordering transition at 164 K, and susceptibility measurements evidence local spin pairing correlations to higher temperatures.

17.
Inorg Chem ; 57(22): 14347-14352, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30382704

RESUMEN

A ferrite in the Sr2Tl2O5-type MFe3O5 family with M = Co has been synthesized at 12 GPa pressure. Neutron diffraction shows the sample to be Co deficient with composition Co0.6Fe3.4O5. The Co/Fe cation distribution is found to be profoundly different from those of MFe3O5 analogs and lies between normal and inverse limits, as Co2+ substitutes across trigonal prismatic and one of the two octahedral sites. CoFe3O5 shows complex magnetic behavior with weak ferromagnetism below TC1 ≈ 300 K and a second transition to ferrimagnetic order at TC2 ≈100 K. Spin scattering of carriers leads a substantial increase in the hopping activation energy below TC1, and a small negative magnetoresistance is observed at low temperatures.

18.
Inorg Chem ; 57(5): 2815-2822, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29465994

RESUMEN

The structures and properties of vanadium oxides are often related to the formation of molecule-like clusters of vanadium cations through direct V-V bonding. GaV2O4, a new vanadium spinel, was synthesized. Powder diffraction and X-ray total scattering studies, complemented by magnetization and resistivity measurements, reveal that the low-temperature phase of this material is structurally distorted and features ordered pairs of three- and four-atom vanadium clusters. These clusters persist into a disordered cubic phase above the charge-ordering transition at TCO = 415 K. Furthermore, quasi-elastic neutron scattering indicates that the disordered clusters remain well-defined and static to 1100 K.

19.
Inorg Chem ; 57(2): 843-848, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29278498

RESUMEN

A Sr analogue of Ca0.5Bi0.5FeO3, Sr0.5Bi0.5FeO3, containing unusually high valence Fe3.5+ ions was synthesized by using a high-pressure technique. It relieves the electronic instability due to the unusually high valence of Fe3.5+ by a single charge disproportionation (CD) transition (Fe3.5+ → 0.75Fe3+ + 0.25Fe5+) rather than the successive CD and intermetallic charge transfer (CT) transitions seen in Ca0.5Bi0.5FeO3. Conduction-band narrowing due to the significant bend in the Fe-O-Fe bond in the rhombohedral R3̅c crystal structure stabilized the charge-disproportionated state at low temperatures. Most importantly, Bi3+ ions in Sr0.5Bi0.5FeO3 do not act as countercations accepting oxygen holes as they do in Ca0.5Bi0.5FeO3, resulting in the absence of the intermetallic CT transition. The large cavity of the A-site Sr ions prevents the charge-transferred Bi5+ from being stabilized. In the charge-disproportionated state the nearest-neighbor Fe3+ spins align antiferromagnetically and one-fourth of the Fe3+ spins are randomly replaced by Fe5+ spins coupled ferromagnetically with the neighboring Fe3+ spins.

20.
Angew Chem Int Ed Engl ; 57(49): 16099-16103, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30408302

RESUMEN

Ordering of cations in different structural types occurs when there is a significant difference in the oxidation states and ionic radii of the ions involved. Herein we report an unusual ordering of isovalent cations Fe3+ and Al3+ in the polar rhombohedral R3 double perovskite structure of Bi2 FeAlO6 synthesized at high-pressure (6 GPa) and high-temperature (1000 °C). This ordered structure is derived from the 1:1 combination of the polar oxides BiFeO3 (R3c) and BiAlO3 (R3c), which results in reduction of symmetry to an R3 structure where the Fe3+ and Al3+ ions are ordered in a rock salt manner. However, these ions remain disordered in BiFe1-x Alx O3 (x=0.2, 0.3, 0.4) perovskites with R3c structure. The ordered compound undergoes antiferromagnetic ordering at TN ≈280 K. The butterfly nature of piezoelectric displacement loop further confirms the polar nature of the cation-ordered Bi2 FeAlO6 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA