Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Syst ; 43(5): 124, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30919123

RESUMEN

Big data has become one of the most imperative technologies for collecting, handling and analysing enormous volumes of data in a high-performance environment. Enterprise healthcare organizations needs high compute power for the large volume of sensitive data, as well as large storage for storing both data and results, preferably in the cloud. However, security and privacy of patient data have become a critical issue that restricts many healthcare services from using cloud services to their optimal level. Therefore, this issue has limited healthcare organizations from migrating patient data to a cloud storage, because the cloud operators have chance to access sensitive data without the owner's permission. This paper proposes an intelligent security system called Intelligent Framework for Healthcare Data Security (IFHDS). IFHDS enables to secure and process large-scale data using column-based approach with less impact on the performance of data processing. The intelligent framework intends masking personal data and to encrypt sensitive data only. The proposed IFHDS splits sensitive data into multiple parts according to sensitivity level, where each part is stored separately over distributed cloud storage. Splitting data based on sensitivity level prevents cloud provider to break complete record of data if succeeds to decrypt part of data. The experimental results confirm that the proposed system secure the sensitive patient data with an acceptable computation time compared to recent security approaches.


Asunto(s)
Macrodatos , Nube Computacional/normas , Seguridad Computacional/normas , Confidencialidad/normas , Almacenamiento y Recuperación de la Información/métodos , Algoritmos , Registros Electrónicos de Salud/normas , Humanos , Almacenamiento y Recuperación de la Información/normas
2.
J Med Syst ; 43(6): 151, 2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31011824

RESUMEN

The original version of this article unfortunately contained a mistake. All algorithms are missing in the online PDF version. The original version has been corrected.

3.
Multimed Tools Appl ; 81(11): 15961-15975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250360

RESUMEN

Nowadays, deep learning achieves higher levels of accuracy than ever before. This evolution makes deep learning crucial for applications that care for safety, like self-driving cars and helps consumers to meet most of their expectations. Further, Deep Neural Networks (DNNs) are powerful approaches that employed to solve several issues. These issues include healthcare, advertising, marketing, computer vision, speech processing, natural language processing. The DNNs have marvelous progress in these different fields, but training such DNN models requires a lot of time, a vast amount of data and in most cases a lot of computational steps. Selling such pre-trained models is a profitable business model. But, sharing them without the owner permission is a serious threat. Unfortunately, once the models are sold, they can be easily copied and redistributed. This paper first presents a review of how digital watermarking technologies are really very helpful in the copyright protection of the DNNs. Then, a comparative study between the latest techniques is presented. Also, several optimizers are proposed to improve the accuracy against the fine-tuning attack. Finally, several experiments are performed with black-box settings using several optimizers and the results are compared with the SGD optimizer.

4.
Comput Intell Neurosci ; 2020: 8813089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424960

RESUMEN

Understanding video files is a challenging task. While the current video understanding techniques rely on deep learning, the obtained results suffer from a lack of real trustful meaning. Deep learning recognizes patterns from big data, leading to deep feature abstraction, not deep understanding. Deep learning tries to understand multimedia production by analyzing its content. We cannot understand the semantics of a multimedia file by analyzing its content only. Events occurring in a scene earn their meanings from the context containing them. A screaming kid could be scared of a threat or surprised by a lovely gift or just playing in the backyard. Artificial intelligence is a heterogeneous process that goes beyond learning. In this article, we discuss the heterogeneity of AI as a process that includes innate knowledge, approximations, and context awareness. We present a context-aware video understanding technique that makes the machine intelligent enough to understand the message behind the video stream. The main purpose is to understand the video stream by extracting real meaningful concepts, emotions, temporal data, and spatial data from the video context. The diffusion of heterogeneous data patterns from the video context leads to accurate decision-making about the video message and outperforms systems that rely on deep learning. Objective and subjective comparisons prove the accuracy of the concepts extracted by the proposed context-aware technique in comparison with the current deep learning video understanding techniques. Both systems are compared in terms of retrieval time, computing time, data size consumption, and complexity analysis. Comparisons show a significant efficient resource usage of the proposed context-aware system, which makes it a suitable solution for real-time scenarios. Moreover, we discuss the pros and cons of deep learning architectures.


Asunto(s)
Inteligencia Artificial , Macrodatos , Emociones , Inteligencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA