Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273527

RESUMEN

Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.


Asunto(s)
Ecosistema , Suelo , Humanos , Agricultura , Plantas , Carbono
2.
Oecologia ; 191(1): 191-203, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31363838

RESUMEN

Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photodegradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), differing in their leaf traits and decomposition rate, were analysed over a period of 7-10 months. Over the entire period, the effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark treatment, where litter lost 20-30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate forest, UV radiation and blue light remain important in accelerating surface litter decomposition.


Asunto(s)
Árboles , Rayos Ultravioleta , Bosques , Francia , Hojas de la Planta
3.
J Mt Sci ; 17(10): 2459-2484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052199

RESUMEN

At the end of October 2018, a storm of unprecedented strength severely damaged the forests of the eastern sector of the Italian Alps. The affected forest area covers 42,500 ha. The president of one of the damaged regions asked for help from the University of Padua. After eight months of discussion, the authors of this article wrote a consensus text. The sometimes asper debate brought to light some crucial aspects: 1) even experienced specialists may have various opinions based on scientific knowledge that lead to conflicting proposals for action. For some of them there is evidence that to restore a destroyed natural environment it is more judicious to do nothing; 2) the soil corresponds to a living structure and every ecosystem's management should be based on it; 3) faced with a catastrophe, people and politicians find themselves unarmed, also because they rarely have the scientific background to understand natural processes. Yet politicians are the only persons who make the key decisions that drive the economy in play and therefore determine the near future of our planet. This article is an attempt to respond directly to a governor with a degree in animal production science, who formally and prudently asked a university department called "Land, Environment, Agriculture and Forestry" for help before taking decisions; 4) the authors also propose an artistic interpretation of facts (uncontrolled storm) and conclusions (listen to the soil). Briefly, the authors identify the soil as an indispensable source for the renewal of the destroyed forest, give indications on how to prepare a map of the soils of the damaged region, and suggest to anchor on this soil map a series of silvicultural and soil management actions that will promote the soil conservation and the faster recovery of the natural dynamic stability and resilience. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1007/s11629-019-5890-0 and is accessible for authorized users.

4.
C R Biol ; 328(1): 57-74, 2005 Jan.
Artículo en Francés | MEDLINE | ID: mdl-15714880

RESUMEN

The soil macrofauna of a pure beech (PS) and a mixed beech-hornbeam (MS) stand was recorded using a sample design spatially explicit at stand level. Humic epipedon morphological and chemical properties, relative irradiance, soil bulk density, and the specific composition of the litter in MS were also investigated. The taxonomic diversity is nearly similar on both sites, but the average by sample is greater under PS. The main factors controlling soil macrofauna spatial variability were: litter quality under MS and humus form activity under PS. These results suggest a distal control (i.e. external to humic epipedon) of macrofauna spatial variability when the litter quality is variable and a proximal control (i.e. internal to humic epipedon) when it is uniform at the spatial scale of the study.


Asunto(s)
Fagus/crecimiento & desarrollo , Suelo , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Densidad de Población , Análisis de Regresión , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA