Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 86: 95-101, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26196304

RESUMEN

We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation.


Asunto(s)
Corazón/fisiopatología , Preparación de Corazón Aislado , Miocardio/metabolismo , Animales , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Radiografía , Sodio/metabolismo , Radioisótopos de Sodio/administración & dosificación , Radioisótopos de Sodio/metabolismo
2.
J Biol Chem ; 288(19): 13808-20, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23532852

RESUMEN

BACKGROUND: Phospholemman regulates the plasmalemmal sodium pump in excitable tissues. RESULTS: In cardiac muscle, a subpopulation of phospholemman with a unique phosphorylation signature associates with other phospholemman molecules but not with the pump. CONCLUSION: Phospholemman oligomers exist in cardiac muscle. SIGNIFICANCE: Much like phospholamban regulation of SERCA, phospholemman exists as both a sodium pump inhibiting monomer and an unassociated oligomer. Phospholemman (PLM), the principal quantitative sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. Much like phospholamban, which regulates the related ATPase SERCA, PLM is reported to oligomerize. We investigated subpopulations of PLM in adult rat ventricular myocytes based on phosphorylation status. Co-immunoprecipitation identified two pools of PLM: one not associated with the sodium pump phosphorylated at Ser(63) and one associated with the pump, both phosphorylated at Ser(68) and unphosphorylated. Phosphorylation of PLM at Ser(63) following activation of PKC did not abrogate association of PLM with the pump, so its failure to associate with the pump was not due to phosphorylation at this site. All pools of PLM co-localized to cell surface caveolin-enriched microdomains with sodium pump α subunits, despite the lack of caveolin-binding motif in PLM. Mass spectrometry analysis of phosphospecific immunoprecipitation reactions revealed no unique protein interactions for Ser(63)-phosphorylated PLM, and cross-linking reagents also failed to identify any partner proteins for this pool. In lysates from hearts of heterozygous transgenic animals expressing wild type and unphosphorylatable PLM, Ser(63)-phosphorylated PLM co-immunoprecipitated unphosphorylatable PLM, confirming the existence of PLM multimers. Dephosphorylation of the PLM multimer does not change sodium pump activity. Hence like phospholamban, PLM exists as a pump-inhibiting monomer and an unassociated oligomer. The distribution of different PLM phosphorylation states to different pools may be explained by their differential proximity to protein phosphatases rather than a direct effect of phosphorylation on PLM association with the pump.


Asunto(s)
Ventrículos Cardíacos/citología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Secuencias de Aminoácidos , Animales , Caveolas/metabolismo , Fijadores/química , Formaldehído/química , Ventrículos Cardíacos/metabolismo , Inmunoprecipitación , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/metabolismo , Ratas
3.
Cell Rep ; 43(2): 113679, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38236777

RESUMEN

Phospholemman (PLM) regulates the cardiac sodium pump: PLM phosphorylation activates the pump whereas PLM palmitoylation inhibits its activity. Here, we show that the anti-oxidant protein peroxiredoxin 6 (Prdx6) interacts with and depalmitoylates PLM in a glutathione-dependent manner. Glutathione loading cells acutely reduce PLM palmitoylation; glutathione depletion significantly increases PLM palmitoylation. Prdx6 silencing abolishes these effects, suggesting that PLM can be depalmitoylated by reduced Prdx6. In vitro, only recombinant Prdx6, among several peroxiredoxin isoforms tested, removes palmitic acid from recombinant palmitoylated PLM. The broad-spectrum depalmitoylase inhibitor palmostatin B prevents Prdx6-dependent PLM depalmitoylation in cells and in vitro. Our data suggest that Prdx6 is a thioesterase that can depalmitoylate proteins by nucleophilic attack via its reactive thiol, linking PLM palmitoylation and hence sodium pump activity to cellular glutathione status. We show that protein depalmitoylation can occur via a catalytic cysteine in which substrate specificity is determined by a protein-protein interaction.


Asunto(s)
Peroxiredoxina VI , Fosfoproteínas , ATPasa Intercambiadora de Sodio-Potasio , Proteínas de la Membrana , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA