Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 26(6): 2368-2378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38560764

RESUMEN

AIM: To describe the biomarker strategy that was applied to select survodutide (BI 456906), BI 456908 and BI 456897 from 19 dual glucagon receptor (GCGR)/ glucagon-like peptide-1 receptor (GLP-1R) agonists for in-depth pharmacological profiling, which led to the qualification of survodutide as the clinical development candidate. MATERIALS AND METHODS: Potencies to increase cyclic adenosine monophosphate (cAMP) were determined in Chinese hamster ovary (CHO)-K1 cells stably expressing human GCGR and GLP-1R. Agonism for endogenously expressed receptors was investigated in insulinoma cells (MIN6) for mouse GLP-1R, and in rat primary hepatocytes for the GCGR. In vivo potencies to engage the GLP-1R or GCGR were determined, measuring improvement in oral glucose tolerance (30 nmol/kg) and increase in plasma fibroblast growth factor-21 (FGF21) and liver nicotinamide N-methyltransferase (NNMT) mRNA expression (100 nmol/kg), respectively. Body weight- and glucose-lowering efficacies were investigated in diet-induced obese (DIO) mice and diabetic db/db mice, respectively. RESULTS: Upon acute dosing in lean mice, target engagement biomarkers for the GCGR and GLP-1R demonstrated a significant correlation (Spearman correlation coefficient with p < 0.05) to the in vitro GCGR and GLP-1R potencies for the 19 dual agonists investigated. Survodutide, BI 456908 and BI 456897 were selected for in-depth pharmacological profiling based on the significant improvement in acute oral glucose tolerance achieved (area under the curve [AUC] of 54%, 57% and 60% vs. vehicle) that was comparable to semaglutide (AUC of 45% vs. vehicle), while showing different degrees of in vivo GCGR engagement, as determined by hepatic NNMT mRNA expression (increased by 15- to 17-fold vs. vehicle) and plasma FGF21 concentrations (increased by up to sevenfold vs. vehicle). In DIO mice, survodutide (30 nmol/kg/once daily), BI 456908 (30 nmol/kg/once daily) and BI 456897 (10 nmol/kg/once daily) achieved a body weight-lowering efficacy from baseline of 25%, 27% and 26%, respectively. In db/db mice, survodutide and BI 456908 (10 and 20 nmol/kg/once daily) significantly lowered glycated haemoglobin (0.4%-0.6%); no significant effect was observed for BI 456897 (3 and 7 nmol/kg/once daily). CONCLUSIONS: Survodutide was selected as the clinical candidate based on its balanced dual GCGR/GLP-1R pharmacology, engaging the GCGR for robust body weight-lowering efficacy exceeding that of selective GLP-1R agonists, while achieving antidiabetic efficacy that was comparable to selective GLP-1R agonism. Survodutide is currently being investigated in Phase 3 clinical trials in people living with obesity.


Asunto(s)
Cricetulus , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Receptores de Glucagón , Animales , Receptores de Glucagón/agonistas , Receptores de Glucagón/genética , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Células CHO , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Humanos , Biomarcadores/sangre , Masculino , Ratas , Ratones Obesos , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico
2.
Diabetologia ; 62(10): 1928-1937, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31414143

RESUMEN

AIMS/HYPOTHESIS: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two peptides that function to promote insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors increase the bioavailability of both GLP-1 and GIP but the dogma continues to be that it is the increase in GLP-1 that contributes to the improved glucose homeostasis. We have previously demonstrated that pancreatic rather than intestinal GLP-1 is necessary for improvements in glucose homeostasis in mice. Therefore, we hypothesise that a combination of pancreatic GLP-1 and GIP is necessary for the full effect of DPP-4 inhibitors on glucose homeostasis. METHODS: We have genetically engineered mouse lines in which the preproglucagon gene (Gcg) is absent in the entire body (GcgRAΔNull) or is expressed exclusively in the intestine (GcgRAΔVilCre) or pancreas and duodenum (GcgRAΔPDX1Cre). These mice were used to examine oral glucose tolerance and GLP-1 and GIP responses to a DPP-4 inhibitor alone, or in combination with incretin receptor antagonists. RESULTS: Administration of the DPP-4 inhibitor, linagliptin, improved glucose tolerance in GcgRAΔNull mice and control littermates and in GcgRAΔVilCre and GcgRAΔPDX1Cre mice. The potent GLP-1 receptor antagonist, exendin-[9-39] (Ex9), blunted improvements in glucose tolerance in linagliptin-treated control mice and in GcgRAΔPDX1Cre mice. Ex9 had no effect on glucose tolerance in linagliptin-treated GcgRAΔNull or in GcgRAΔVilCre mice. In addition to GLP-1, linagliptin also increased postprandial plasma levels of GIP to a similar degree in all genotypes. When linagliptin was co-administered with a GIP-antagonising antibody, the impact of linagliptin was partially blunted in wild-type mice and was fully blocked in GcgRAΔNull mice. CONCLUSIONS/INTERPRETATION: Taken together, these data suggest that increases in pancreatic GLP-1 and GIP are necessary for the full effect of DPP-4 inhibitors on glucose tolerance.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Animales , Glucemia/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Linagliptina/farmacología , Masculino , Ratones , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Periodo Posprandial , Proglucagón/farmacología
3.
Diabetes Res Clin Pract ; 207: 110779, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37330144

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved treatments for Type 2 diabetes mellitus, with liraglutide and semaglutide also approved for the treatment of obesity. The natural gut hormone oxyntomodulin is a weak dual agonist of the glucagon receptor (GCGR) and GLP-1R. Development of poly-agonists mimicking oxyntomodulin, such as the novel dual GCGR/GLP-1R agonist survodutide, represents an important step towards a more effective treatment for people with Type 2 diabetes mellitus and obesity. Survodutide is a 29-amino acid peptide derived from glucagon, with the incorporation of potent GLP-1 activities. It contains a C18 diacid which mediates binding to albumin, thereby prolonging the half-life to enable once-weekly subcutaneous dosing. The utilisation of GCGR agonism aims to enhance body weight-lowering effects by increasing energy expenditure in addition to the anorectic action of GLP-1R agonists. Glucose-lowering efficacy of survodutide has been demonstrated in a Phase II trial in patients with Type 2 diabetes mellitus and obesity and was associated with clinically meaningful body weight loss. These data highlight the potential of dual GCGR/GLP-1R agonism for reducing glycated haemoglobin and body weight in patients with Type 2 diabetes mellitus, and for greater therapeutic efficacy compared with GLP-1R agonism alone.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Oxintomodulina/uso terapéutico , Obesidad/complicaciones , Péptido 1 Similar al Glucagón/uso terapéutico , Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas
4.
Mol Cell Biochem ; 376(1-2): 163-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23361362

RESUMEN

The two splice variants of human glucose transporter 9 (hGLUT9) are targeted to different polarized membranes. hGLUT9a traffics to the basolateral membrane, whereas hGLUT9b traffics to the apical region. This study examines the sorting mechanism of these variants, which differ only in their N-terminal domain. Mutating a di-leucine motif unique to GLUT9a did not affect targeting. Chimeric proteins were made using GLUT1, a basolaterally targeted transporter, and GLUT3, an apically targeted protein whose signal lies in the C-terminus. Overexpression of the chimeric proteins in polarized cells demonstrates that the N-terminus of hGLUT9b contains a signal capable of redirecting GLUT1 to the apical membrane. The N-terminus of hGLUT9a, however, does not contain a basolateral signal sufficient enough to redirect GLUT3. Portions of the GLUT9a N-terminus were substituted with corresponding portions of the GLUT9b N-terminus to determine the motif responsible for apical targeting. The first 16 amino acids were not found to be a sufficient apical signal. The last ten amino acids of the N-termini differ only in amino-acid class at one location. In the B-form, leucine, a hydrophobic residue, is substituted for lysine, a basic residue, found in the A-form. However, mutation of the leucine in hGLUT9b to a lysine resulted in retention of the apical signal. We therefore believe the apical signal exists as an interplay between the final ten amino acids of the N-terminus and another motif within the protein such as the intracellular loop or other motifs within the N-terminus.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Membrana Celular/metabolismo , Perros , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Humanos , Leucina/metabolismo , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas
5.
Mol Metab ; 66: 101633, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356832

RESUMEN

OBJECTIVE: Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS: BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS: BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS: BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptores de Glucagón , Animales , Humanos , Ratones , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Oxintomodulina/farmacología , Péptidos/farmacología , Péptidos/metabolismo , Receptores de Glucagón/metabolismo
6.
Mol Metab ; 51: 101237, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33878401

RESUMEN

BACKGROUND: A chronic imbalance of energy intake and energy expenditure results in excess fat storage. The obesity often caused by this overweight is detrimental to the health of millions of people. Understanding both sides of the energy balance equation and their counter-regulatory mechanisms is critical to the development of effective therapies to treat this epidemic. SCOPE OF REVIEW: Behaviors surrounding ingestion have been reviewed extensively. This review focuses more specifically on energy expenditure regarding bodyweight control, with a particular emphasis on the organs and attractive metabolic processes known to reduce bodyweight. Moreover, previous and current attempts at anti-obesity strategies focusing on energy expenditure are highlighted. Precise measurements of energy expenditure, which consist of cellular, animal, and human models, as well as measurements of their translatability, are required to provide the most effective therapies. MAJOR CONCLUSIONS: A precise understanding of the components surrounding energy expenditure, including tailored approaches based on genetic, biomarker, or physical characteristics, must be integrated into future anti-obesity treatments. Further comprehensive investigations are required to define suitable treatments, especially because the complex nature of the human perspective remains poorly understood.


Asunto(s)
Ingestión de Energía , Metabolismo Energético/fisiología , Obesidad/terapia , Animales , Modelos Animales de Enfermedad , Humanos , Obesidad/metabolismo , Obesidad/fisiopatología
7.
Cell Metab ; 33(4): 833-844.e5, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571454

RESUMEN

Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.


Asunto(s)
Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Polipéptido Inhibidor Gástrico/farmacología , Receptores de la Hormona Gastrointestinal/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Sistema Nervioso Central/metabolismo , Dieta Alta en Grasa , Polipéptido Inhibidor Gástrico/química , Péptido 1 Similar al Glucagón/farmacología , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de la Hormona Gastrointestinal/deficiencia , Receptores de la Hormona Gastrointestinal/genética
8.
IUBMB Life ; 62(5): 315-33, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20209635

RESUMEN

The protein family of facilitative glucose transporters comprises 14 isoforms that share common structural features such as 12 transmembrane domains, N- and C-termini facing the cytoplasm of the cell, and a N-glycosylation side either within the first or fifth extracellular loop. Based on their sequence homology, three classes can be distinguished: class I includes GLUT1-4 and GLUT14, class II the "odd transporters" GLUT5, 7, 9, 11, and class III the "even transporters" GLUT6, 8, 10, 12 and the proton driven myoinositol transporter HMIT (or GLUT13). With the cloning and characterization of the more recent class II and III isoforms, it became apparent that despite their structural similarities, the different isoforms not only show a distinct tissue-specific expression pattern but also show distinct characteristics such as alternative splicing, specific (sub)cellular localization, and affinities for a spectrum of substrates. This review summarizes the current understanding of the physiological role for the various transport facilitators based on human genetically inherited disorders or single-nucleotide polymorphisms and knockout mice models. The emphasis of the review will be on the potential functional role of the more recent isoforms.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/fisiología , Secuencia de Aminoácidos , Animales , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Transportador de Glucosa de Tipo 2/deficiencia , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 3/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/fisiología , Transportador de Glucosa de Tipo 5/fisiología , Humanos , Ratones , Filogenia , Especificidad por Sustrato
9.
Peptides ; 125: 170174, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31689454

RESUMEN

Accumulating evidence suggests that glucose-dependent insulinotropic polypeptide (GIP) in addition to its involvement in type 2 diabetic pathophysiology may be involved in the development of obesity and the pathogenesis of cardiovascular disease. In this review, we outline recent preclinical and clinical cardiovascular-related discoveries about GIP. These include chronotropic and blood pressure-lowering effects of GIP. Furthermore, GIP has been suggested to control vasodilation via secretion of nitric oxide, and vascular leukocyte adhesion and inflammation via expression and secretion of endothelin 1. Also, GIP seems to regulate circulating lipids via effects on adipose tissue uptake and metabolism of lipids. Lastly, we discuss how dysmetabolic conditions such as obesity and type 2 diabetes may shift the actions of GIP in an atherogenic direction, and we provide a perspective on the therapeutic potential of GIP receptor agonism and antagonism in cardiovascular diseases. We conclude that GIP actions may have implications for the development of cardiovascular disease, but also that the potential of GIP-based drugs for the treatment of cardiovascular disease currently is uncertain.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Polipéptido Inhibidor Gástrico/farmacología , Fármacos Gastrointestinales/farmacología , Receptores de la Hormona Gastrointestinal/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Humanos
10.
Mol Metab ; 42: 101071, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896668

RESUMEN

OBJECTIVE: Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i), or gliflozins, are anti-diabetic drugs that lower glycemia by promoting glucosuria, but they also stimulate endogenous glucose and ketone body production. The likely causes of these metabolic responses are increased blood glucagon levels, and decreased blood insulin levels, but the mechanisms involved are hotly debated. This study verified whether or not SGLT2i affect glucagon and insulin secretion by a direct action on islet cells in three species, using multiple approaches. METHODS: We tested the in vivo effects of two selective SGLT2i (dapagliflozin, empagliflozin) and a SGLT1/2i (sotagliflozin) on various biological parameters (glucosuria, glycemia, glucagonemia, insulinemia) in mice. mRNA expression of SGLT2 and other glucose transporters was assessed in rat, mouse, and human FACS-purified α- and ß-cells, and by analysis of two human islet cell transcriptomic datasets. Immunodetection of SGLT2 in pancreatic tissues was performed with a validated antibody. The effects of dapagliflozin, empagliflozin, and sotagliflozin on glucagon and insulin secretion were assessed using isolated rat, mouse and human islets and the in situ perfused mouse pancreas. Finally, we tested the long-term effect of SGLT2i on glucagon gene expression. RESULTS: SGLT2 inhibition in mice increased the plasma glucagon/insulin ratio in the fasted state, an effect correlated with a decline in glycemia. Gene expression analyses and immunodetections showed no SGLT2 mRNA or protein expression in rodent and human islet cells, but moderate SGLT1 mRNA expression in human α-cells. However, functional experiments on rat, mouse, and human (29 donors) islets and the in situ perfused mouse pancreas did not identify any direct effect of dapagliflozin, empagliflozin or sotagliflozin on glucagon and insulin secretion. SGLT2i did not affect glucagon gene expression in rat and human islets. CONCLUSIONS: The data indicate that the SGLT2i-induced increase of the plasma glucagon/insulin ratio in vivo does not result from a direct action of the gliflozins on islet cells.


Asunto(s)
Glucagón/metabolismo , Secreción de Insulina/fisiología , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Compuestos de Bencidrilo/farmacología , Glucemia/metabolismo , Glucagón/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Glucósidos/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Páncreas/metabolismo , Ratas , Transportador 2 de Sodio-Glucosa/fisiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
11.
Physiol Genomics ; 33(3): 333-40, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18349383

RESUMEN

Uncoupling of oxidative phosphorylation represents a potential target for the treatment of hyperglycemia and insulin resistance in obesity and type 2 diabetes. The present study investigated whether the expression of uncoupling protein 1 in skeletal muscles of transgenic (mUCP1 TG) mice modulates insulin action in major insulin target tissues in vivo. Euglycemic-hyperinsulinemic clamps (17 pM x kg lean body mass(-1) x min(-1)) were performed in 9-mo-old hemizygous male mUCP1 TG mice and wild-type (WT) littermates matched for body composition. mUCP1 TG mice exhibited fasting hypoglycemia and hypoinsulinemia compared with WT mice, whereas fasting hepatic glucose production rates were comparable in both genotypes. mUCP1 TG mice were markedly more sensitive to insulin action compared with WT mice and displayed threefold higher glucose infusion rates, enhanced skeletal muscle and white adipose tissue glucose uptake, and whole body glycolysis rates. In the absence of alterations in plasma adiponectin concentrations, acceleration of insulin-stimulated glucose turnover in skeletal muscle of mUCP1 TG mice was accompanied by increased phosphorylated Akt-to-Akt and phosphorylated AMP-activated protein kinase (AMPK)-to-AMPK ratios compared with WT mice. UCP1-mediated uncoupling of oxidative phosphorylation in skeletal muscle was paralleled by AMPK activation and thereby stimulated insulin-mediated glucose uptake in skeletal muscle.


Asunto(s)
Glucosa/metabolismo , Resistencia a la Insulina/genética , Insulina/fisiología , Canales Iónicos/biosíntesis , Proteínas Mitocondriales/biosíntesis , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Adiponectina/sangre , Animales , Glucemia/genética , Composición Corporal , Activación Enzimática/genética , Técnica de Clampeo de la Glucosa , Insulina/sangre , Insulina/farmacología , Canales Iónicos/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transgenes , Proteína Desacopladora 1
12.
JACC Basic Transl Sci ; 3(6): 844-857, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30623143

RESUMEN

The glucagon-like peptide-1 receptor agonists (GLP-1RAs) liraglutide and semaglutide reduce cardiovascular risk in type 2 diabetes patients. The mode of action is suggested to occur through modified atherosclerotic progression. In this study, both of the compounds significantly attenuated plaque lesion development in apolipoprotein E-deficient (ApoE-/-) mice and low-density lipoprotein receptor-deficient (LDLr-/-) mice. This attenuation was partly independent of weight and cholesterol lowering. In aortic tissue, exposure to a Western diet alters expression of genes in pathways relevant to the pathogenesis of atherosclerosis, including leukocyte recruitment, leukocyte rolling, adhesion/extravasation, cholesterol metabolism, lipid-mediated signaling, extracellular matrix protein turnover, and plaque hemorrhage. Treatment with semaglutide significantly reversed these changes. These data suggest GLP-1RAs affect atherosclerosis through an anti-inflammatory mechanism.

13.
Endocrinology ; 148(4): 1561-73, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17194745

RESUMEN

The ATP-binding cassette transporter G1 (ABCG1) catalyzes export of cellular cholesterol from macrophages and hepatocytes. Here we identify an additional function of ABCG1 in the regulation of adiposity in screens of the Drosophila melanogaster and the New Zealand obese (NZO) mouse genomes. Insertion of modified transposable elements of the P-family upstream of CG17646, the Drosophila ortholog of Abcg1, generated lines of flies with increased triglyceride stores. In NZO mice, an Abcg1 variant was identified in a suggestive adiposity quantitative trait locus and was associated with higher expression of the gene in white adipose tissue. Targeted disruption of Abcg1 in mice resulted in reduced body weight gain (8.42+/-0.6 g in Abcg1-/- vs. 13.07+/-1.1 g in Abcg1+/+ mice) and adipose tissue mass gain (3.78+/-1.3 g in Abcg1-/- vs. 9.39+/-1.6 g in Abcg1+/+ mice) detected over a period of 12 wk. The reduction of adipose tissue mass in Abcg1-/- mice was associated with markedly decreased size of the adipocytes. In contrast to their wild-type littermates, male Abcg1-/- mice exhibited no high-fat diet-induced impairment of glucose tolerance and fatty liver. Furthermore, Abcg1-/- mice possess decreased food intake and elevated total energy expenditure (Abcg1-/- mice, 748.1+/-5.4 kJ/kg metabolic body mass; Abcg1+/+ mice, 684.3+/-5.0 kJ/kg metabolic body mass; P=0.011), body temperature (Abcg1-/- mice, 37.82+/-0.29 C; Abcg1+/+ mice, 36.83+/-0.24 C; P<0.05), and locomotor activity (Abcg1-/- mice, 3655+/-189 counts/12 h during dark phase; Abcg1+/+ mice, 2445+/-235 counts/12 h during dark phase; P<0.01). Our data indicate a previously unrecognized role of ABCG1 in the regulation of energy balance and triglyceride storage.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Adipocitos/citología , Tamaño de la Célula , Dieta/efectos adversos , Lipoproteínas/genética , Obesidad/prevención & control , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/fisiología , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Drosophila melanogaster , Femenino , Lipoproteínas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Ratones Noqueados , Ratones Obesos , Obesidad/etiología , Obesidad/genética
14.
J Endocrinol ; 192(3): 539-51, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17332523

RESUMEN

Various nuclear receptors form dimers to activate target genes via specific response elements located within promoters or enhancers. Retinoid X receptor (RXR) serves as a dimerization partner for many nuclear receptors including retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR). Dimers show differential preference towards directly repeated response elements with 1-5 nucleotide spacing, and direct repeat 1 (DR1) is a promiscuous element which recruits RAR/RXR, RXR/RXR, and PPAR/RXR in vitro. In the present investigation, we report identification of a novel RAR/RXR target gene which is regulated by DR1s in the promoter region. This gene, namely spermatocyte-specific marker (Ssm), recruits all the three combinations of nuclear receptors in vitro, but in vivo regulation is observed by trans-retinoic acid-activated RAR/RXR dimer. Indeed, chromatin immunoprecipitation experiment demonstrates binding of RARbeta and RXRalpha in the promoter region of the Ssm. Interestingly, expression of Ssm is almost exclusively observed in spermatocytes in the adult mouse testis, where RA signaling is known to regulate developmental program of male germ cells. The results show that Ssm is a RAR/RXR target gene uniquely using DR1 and exhibits stage-specific expression in the mouse testis with potential function in later stages of spermatogenesis. This finding exemplifies usage of DR1s as retinoic acid response element (RARE) under a specific in vivo context.


Asunto(s)
Fosfoproteínas/fisiología , Receptores de Ácido Retinoico/metabolismo , Elementos de Respuesta , Receptores X Retinoide/metabolismo , Testículo/metabolismo , Factores de Transcripción/fisiología , Tretinoina/metabolismo , Animales , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , ADN/análisis , Dimerización , Femenino , Biblioteca de Genes , Inmunoprecipitación , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos , Microscopía Fluorescente , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatocitos/metabolismo , Testículo/química , Transfección , Útero/química
15.
Mol Endocrinol ; 20(3): 686-97, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16293642

RESUMEN

A novel glucose transporter (GLUT), mouse GLUT9 (mGLUT9), was recently cloned from mouse 7-d embryonic cDNA. Several splice variants of mGLUT9 were described, two of which were cloned (mGLUT9a and mGLUT9a Delta 209-316). This study describes the cloning and characterization of another splice variant, mGLUT9b. Cloned from adult liver, mGLUT9b is identical to mGLUT9a except at the amino terminus. Based on analysis of the genomic structure, the different amino termini result from alternative transcriptional/translational start sites. Expression and localization of these two mGLUT9 splice variants were examined in control and diabetic adult mouse tissues and in cell lines. RT-PCR analysis demonstrated expression of mGLUT9a in several tissues whereas mGLUT9b was observed primarily in liver and kidney. Using a mGLUT9-specific antibody, Western blot analysis of total membrane fractions from liver and kidney detected a single, wide band, migrating at approximately 55 kDa. This band shifted to a lower molecular mass when deglycosylated with peptide-N-glycosidase F. Both forms were present in liver and kidney. Immunohistochemical localization demonstrated basolateral distribution of mGLUT9 in liver hepatocytes and the expression of mGLUT9 in specific tubules in the outer cortex of the kidney. To investigate the alternative amino termini, mGLUT9a and mGLUT9b were overexpressed in kidney epithelium cell lines. Subcellular fractions localized both forms to the plasma membrane. Immunofluorescent staining of polarized Madin Darby canine kidney cells overexpressing mGLUT9 depicted a basolateral distribution for both splice variants. Finally, mGLUT9 protein expression was significantly increased in the kidney and liver from streptozotocin-induced diabetic mice compared with nondiabetic animals.


Asunto(s)
Empalme Alternativo , Diabetes Mellitus Experimental/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Riñón/fisiología , Hígado/fisiología , Factores de Edad , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clonación Molecular , Diabetes Mellitus Experimental/genética , Perros , Femenino , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Oocitos/fisiología , Valores de Referencia , Regulación hacia Arriba , Xenopus laevis
16.
MAbs ; 9(3): 536-549, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28055305

RESUMEN

Raising functional antibodies against G protein-coupled receptors (GPCRs) is challenging due to their low density expression, instability in the absence of the cell membrane's lipid bilayer and frequently short extracellular domains that can serve as antigens. In addition, a particular therapeutic concept may require an antibody to not just bind the receptor, but also act as a functional receptor agonist or antagonist. Antagonizing the glucose-dependent insulinotropic polypeptide (GIP) receptor may open up new therapeutic modalities in the treatment of diabetes and obesity. As such, a panel of monoclonal antagonistic antibodies would be a useful tool for in vitro and in vivo proof of concept studies. The receptor is highly conserved between rodents and humans, which has contributed to previous mouse and rat immunization campaigns generating very few usable antibodies. Switching the immunization host to chicken, which is phylogenetically distant from mammals, enabled the generation of a large and diverse panel of monoclonal antibodies containing 172 unique sequences. Three-quarters of all chicken-derived antibodies were functional antagonists, exhibited high-affinities to the receptor extracellular domain and sampled a broad epitope repertoire. For difficult targets, including GPCRs such as GIPR, chickens are emerging as valuable immunization hosts for therapeutic antibody discovery.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Receptores de la Hormona Gastrointestinal/inmunología , Animales , Afinidad de Anticuerpos , Pollos , Humanos , Ratones , Ratas
17.
Mol Metab ; 4(11): 795-810, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26629404

RESUMEN

OBJECTIVE: Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. METHODS: We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. RESULTS: Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. CONCLUSIONS: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

18.
Endocrinology ; 145(4): 1594-601, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14726445

RESUMEN

The arylhydrocarbon receptor (AhR) is known to mediate toxic responses to dioxin (2,3,7,8-tetrachlorodibenzo-p- dioxin) and related compounds and has been extensively characterized from a toxicological viewpoint. However, it has recently been reported that the AhR may have a central role in ovarian physiology. To investigate the role of AhR during oocyte maturation, we analyzed the expression of AhR, its nuclear partner AhR nuclear translocator, and the major target gene CYP1A1, in bovine cumulus-oocyte complexes (COCs) by semiquantitative RT-PCR and Western blot. Coexpression of AhR and AhR nuclear translocator was observed in both oocytes and surrounding cumulus cells before and after in vitro maturation (IVM). Furthermore, after IVM, both cell types showed a clear up-regulation of AhR mRNA compared with the expression at 0 h. Constitutive expression of CYP1A1 mRNA was observed in immature oocytes at the background level, whereas no expression was observed in the surrounding cumulus cells. Interestingly, a significant increase in CYP1A1 expression level was observed in both oocytes and cumulus cells after IVM. To further investigate the role of AhR in CYP1A1 up-regulation and oocyte maturation, COCs were treated throughout IVM with the AhR antagonists, alpha-naphthoflavone and resveratrol. Both antagonists decreased the level of CYP1A1 in COCs compared with controls. Furthermore, CYP1A1 down-regulation was accompanied by a reduced ability of oocytes to complete in vitro maturation until metaphase II stage. These results suggest that CYP1A1 induction in COCs is necessary for correct proceeding of in vitro oocyte maturation in bovine and suggest a physiological role of AhR during resumption of meiosis.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Proteínas de Unión al ADN , Oocitos/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo , Benzoflavonas/farmacología , Sangre , Bovinos , Senescencia Celular , Citocromo P-450 CYP1A1/genética , Femenino , Expresión Génica , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/fisiología , Resveratrol , Transducción de Señal , Estilbenos/farmacología , Factores de Transcripción/metabolismo
19.
FEBS Lett ; 586(3): 248-53, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22212718

RESUMEN

Sodium glucose cotransporters (SGLT) actively catalyse carbohydrate transport across cellular membranes. Six of the 12 known SGLT family members have the capacity to bind and/or transport monosaccharides (SGLT-1 to 6); of these, all but SGLT-5 have been characterised. Here we demonstrate that human SGLT-5 is exclusively expressed in the kidney. Four splice variants were detected and the most abundant SGLT-5-mRNA was functionally characterised. SGLT-5 mediates sodium-dependent [(14)C]-α-methyl-D-glucose (AMG) transport that can be inhibited by mannose, fructose, glucose, and galactose. Uptake studies using demonstrated high capacity transport for mannose and fructose and, to a lesser extent, glucose, AMG, and galactose. SGLT-5 mediated mannose, fructose and AMG transport was weakly (µM potency) inhibited by SGLT-2 inhibitors. In summary, we have characterised SGLT-5 as a kidney mannose transporter. Further studies are warranted to explore the physiological role of SGLT-5.


Asunto(s)
Riñón/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Absorción/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Clonación Molecular , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Células HEK293 , Humanos , Especificidad de Órganos , Florizina/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa/química , Transportador 1 de Sodio-Glucosa/genética
20.
Mol Cell Biol ; 32(21): 4363-74, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22927645

RESUMEN

The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) is located at the trans-Golgi compartment and regulates the recruitment of Arf-like 1 (ARL1) and its effector golgin-245 to this compartment. Here, we show that liver-specific knockout of Arfrp1 in the mouse (Arfrp1(liv-/-)) resulted in early growth retardation, which was associated with reduced hepatic insulin-like growth factor 1 (IGF1) secretion. Accordingly, suppression of Arfrp1 in primary hepatocytes resulted in a significant reduction of IGF1 release. However, the hepatic secretion of IGF-binding protein 2 (IGFBP2) was not affected in the absence of ARFRP1. In addition, Arfrp1(liv-/-) mice exhibited decreased glucose transport into the liver, leading to a 50% reduction of glycogen stores as well as a marked retardation of glycogen storage after fasting and refeeding. These abnormalities in glucose metabolism were attributable to reduced protein levels and intracellular retention of the glucose transporter GLUT2 in Arfrp1(liv-/-) livers. As a consequence of impaired glucose uptake into the liver, the expression levels of carbohydrate response element binding protein (ChREBP), a transcription factor regulated by glucose concentration, and its target genes (glucokinase and pyruvate kinase) were markedly reduced. Our data indicate that ARFRP1 in the liver is involved in the regulation of IGF1 secretion and GLUT2 sorting and is thereby essential for normal growth and glycogen storage.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glucógeno Hepático/metabolismo , Hígado/metabolismo , Factores de Ribosilacion-ADP/deficiencia , Factores de Ribosilacion-ADP/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Metabolismo de los Hidratos de Carbono , Proliferación Celular , Células Cultivadas , Glucosa/metabolismo , Aparato de Golgi/metabolismo , Hepatocitos/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/biosíntesis , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA