RESUMEN
Despite the need for quantitative measurements of light intensity across many scientific disciplines, existing technologies for measuring light dose at the sample of a fluorescence microscope cannot simultaneously retrieve light intensity along with spatial distribution over a wide range of wavelengths and intensities. To address this limitation, we developed two rapid and straightforward protocols that use organic dyes and fluorescent proteins as actinometers. The first protocol relies on molecular systems whose fluorescence intensity decays and/or rises in a monoexponential fashion when constant light is applied. The second protocol relies on a broad-absorbing photochemically inert fluorophore to back-calculate the light intensity from one wavelength to another. As a demonstration of their use, the protocols are applied to quantitatively characterize the spatial distribution of light of various fluorescence imaging systems, and to calibrate illumination of commercially available instruments and light sources.
Asunto(s)
Colorantes Fluorescentes , Fluorescencia , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Espectrometría de FluorescenciaRESUMEN
Efficient tools for controlling molecular functions with exquisite spatiotemporal resolution are much in demand to investigate biological processes in living systems. Here we report an easily synthesized caged dexamethasone for photo-activating cytoplasmic proteins fused to the glucocorticoid receptor. In the dark, it is stable inâ vitro as well as inâ vivo in both zebrafish (Danio rerio) and Xenopus sp, two significant models of vertebrates. In contrast, it liberates dexamethasone upon UV illumination, which has been harnessed to interfere with developmental steps in embryos of these animals. Interestingly, this new system is biologically orthogonal to the one for photo-activating proteins fused to the estrogen ERT receptor, which brings great prospect for activating two distinct proteins down to the single cell level.
RESUMEN
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Asunto(s)
Pez Cebra , Animales , Humanos , MicroinyeccionesRESUMEN
Homeoproteins of the Engrailed family are involved in the patterning of mesencephalic boundaries through a mechanism classically ascribed to their transcriptional functions. In light of recent reports on the paracrine activity of homeoproteins, including Engrailed, we asked whether Engrailed intercellular transfer was also involved in brain patterning and boundary formation. Using time-controlled activation of Engrailed combined with tools that block its transfer, we show that the positioning of the diencephalic-mesencephalic boundary (DMB) requires Engrailed paracrine activity. Both zebrafish Eng2a and Eng2b are competent for intercellular transfer in vivo, but only extracellular endogenous Eng2b, and not Eng2a, participates in DMB positioning. In addition, disruption of the Pbx-interacting motif in Engrailed, known to strongly reduce the gain-of-function phenotype, also downregulates Engrailed transfer, thus revealing an unsuspected participation of the Pbx interaction domain in this pathway.
Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.
Asunto(s)
Optogenética/métodos , Compuestos Policíclicos/metabolismo , Receptores de Estrógenos/genética , Animales , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Compuestos Policíclicos/química , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Methods to differentially label cell-surface and intracellular membrane proteins are indispensable for understanding their function and the regulation of their trafficking. We present an efficient strategy for the rapid and selective fluorescent labeling of membrane proteins based on the chemical-genetic fluorescent marker FAST (fluorescence-activating and absorption-shifting tag). Cell-surface FAST-tagged proteins could be selectively and rapidly labeled using fluorogenic membrane-impermeant 4-hydroxybenzylidene rhodanine (HBR) analogs. This approach allows the study of protein trafficking at the plasma membrane with various fluorometric techniques, and opens exciting prospects for the high-throughput screening of small molecules able to restore disease-related trafficking defects.
Asunto(s)
Compuestos de Bencilideno/metabolismo , Membrana Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas de la Membrana/metabolismo , Rodanina/análogos & derivados , Compuestos de Bencilideno/análisis , Membrana Celular/química , Colorantes Fluorescentes/análisis , Células HEK293 , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/análisis , Microscopía Fluorescente/métodos , Transporte de Proteínas , Rodanina/análisis , Rodanina/metabolismo , Proteína Fluorescente RojaRESUMEN
Fluorogenic chromophores have been used recently for fluorescence reporting and biosensing. Their ability to turn on upon specific interaction with a given target has been exploited in particular for the design of fluorogen-based reporters enabling biomolecule labeling and imaging. In this paper, we report the development and exhaustive characterization of a new family of red fluorogenic push-pull chromophores, holding great potential for the development of fluorogen-based reporters or intracellular fluorogenic markers. The proposed methodology is generic and should find general applicability in the discovery of new fluorogenic dyes suitable for the design of fluorogen-based reporters and biosensors.
Asunto(s)
Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Técnicas Biosensibles , Técnicas de Química Sintética , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Toxicidad/métodosRESUMEN
The small and synthetically easily accessible coumarinylmethyl backbone has been modified to generate a family of photolabile protecting groups with redshifted absorption. We relied on introducing electron-donating groups in the 7 position and electron-withdrawing groups in the 2-, and 2- and 3 positions. In particular, we showed that the diethylamino-thiocoumarylmethyl and the diethylamino-coumarylidenemalononitrilemethyl are relevant for uncaging with cyan light. They both exhibit a significant action cross section for uncaging in the 470-500 nm wavelength range and a low light absorption between 350 and 400 nm. These attractive features are favorable to perform chromatic orthogonal photoactivation with UV and blue-cyan light sources, respectively.
Asunto(s)
Cumarinas/química , Cumarinas/síntesis química , Luz , Fotólisis , Espectrofotometría , Rayos UltravioletaRESUMEN
Three procedures that rely on photoactivation are introduced to accurately analyze the disassembly kinetics of a collection of self-immolative spacer groups within the window 10(-2)-10(3)â s. Our results are relevant for deriving quantitative structure-property relationships. In particular, we have been able to access 20â ms temporal resolution, which made possible the measurement of the shortest ever reported disassembly time for an activated self-immolative spacer.
RESUMEN
Absolute measurement of light intensity is sought for in multiple areas of chemistry, biology, physics, and engineering. It can be achieved by using an actinometer from analyzing the time-course of its reaction extent on applying constant light. However, most reported actinometers exploit the absorbance observable for reporting the reaction extent, which is not very sensitive nor relevant in imaging systems. In this work, we report a series of hydrophobic and hydrophilic caged fluorophores that overcome the preceding limitations. Based on the robust pyranine backbone, they can easily be synthesized on a large scale in one to a few steps. Their brightness increases over illumination and their uncaging cross-sections have been thoroughly characterized upon one- and two-photon excitation. As a demonstration of their use, we calibrated light intensity in various chemical and biological samples, which have been observed with epifluorescence and confocal imaging systems.
RESUMEN
Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.
Asunto(s)
Diagnóstico por Imagen/métodos , Fluorescencia , Ingeniería de Proteínas/métodos , Animales , Materiales Biocompatibles , Técnicas Biosensibles , Color , Colorantes , Electrónica , Femenino , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Masculino , Neuronas , Ratas , Ratas Sprague-DawleyRESUMEN
We have implemented a noninvasive optical method for the fast control of protein activity in a live zebrafish embryo. It relies on releasing a protein fused to a modified estrogen receptor ligand binding domain from its complex with cytoplasmic chaperones, upon the local photoactivation of a nonendogenous caged inducer. Molecular dynamics simulations were used to design cyclofen-OH, a photochemically stable inducer of the receptor specific for 4-hydroxy-tamoxifen (ER(T2)). Cyclofen-OH was easily synthesized in two steps with good yields. At submicromolar concentrations, it activates proteins fused to the ER(T2) receptor. This was shown in cultured cells and in zebrafish embryos through emission properties and subcellular localization of properly engineered fluorescent proteins. Cyclofen-OH was successfully caged with various photolabile protecting groups. One particular caged compound was efficient in photoinducing the nuclear translocation of fluorescent proteins either globally (with 365 nm UV illumination) or locally (with a focused UV laser or with two-photon illumination at 750 nm). The present method for photocontrol of protein activity could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration and carcinogenesis) with high spatiotemporal resolution.
Asunto(s)
Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Pez Cebra/genética , Animales , Línea Celular , Chlorocebus aethiops , Ciclofenil/química , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Fotones , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión/análisis , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/farmacología , Rayos Ultravioleta , Pez Cebra/embriología , Pez Cebra/metabolismoRESUMEN
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.
Asunto(s)
Optogenética/métodos , Compuestos Policíclicos/química , Receptores de Estrógenos/genética , Activación Transcripcional , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Expresión Génica , Luz , Procesos Fotoquímicos , Receptores de Estrógenos/química , Pez Cebra/embriologíaRESUMEN
This paper evaluates a series of photolabile protecting groups with built-in fluorescence reporting. They rely on readily available o-acetoxyphenyl methyloxazolones as activated precursors. Alcohol substrates are easily caged. The resulting photoactivable esters exhibit large one- and two-photon uncaging cross sections. The alcohol substrates are quantitatively released in a 1:1 molar ratio with a strongly fluorescent coumarin coproduct that serves as a reporter to quantify substrate delivery.
Asunto(s)
Alcoholes/química , Modelos Moleculares , Oxazolona/análogos & derivados , Oxazolona/química , Catálisis , Cumarinas/síntesis química , Cumarinas/química , Fluorescencia , Estructura Molecular , Fotoquímica , EstereoisomerismoRESUMEN
Adult zebrafish have the remarkable ability to regenerate their heart upon injury, a process that involves limited dedifferentiation and proliferation of spared cardiomyocytes (CMs), and migration of their progeny. During regeneration, proliferating CMs are detected throughout the myocardium, including areas distant to the injury site, but whether all of them are able to contribute to the regenerated tissue remains unknown. Here, we developed a CM-specific, photoinducible genetic labelling system, and show that CMs labelled in embryonic hearts survive and contribute to all three (primordial, trabecular and cortical) layers of the adult zebrafish heart. Next, using this system to investigate the fate of CMs from different parts of the myocardium during regeneration, we show that only CMs immediately adjacent to the injury site contributed to the regenerated tissue. Finally, our results show an extensive predetermination of CM fate during adult heart regeneration, with cells from each myocardial layer giving rise to cells that retain their layer identity in the regenerated myocardium. Overall, our results indicate that adult heart regeneration in the zebrafish is a rather static process governed by short-range signals, in contrast to the highly dynamic plasticity of CM fates that takes place during embryonic heart regeneration.
Asunto(s)
Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración/fisiología , Animales , Diferenciación Celular , Técnica del Anticuerpo Fluorescente , Miocardio/citología , Pez Cebra/fisiologíaRESUMEN
The zebrafish has become an increasingly popular and valuable cancer model over the past few decades. While most zebrafish cancer models are generated by expressing mammalian oncogenes under tissue-specific promoters, here we describe a method that allows for the precise optical control of oncogene expression in live zebrafish. We utilize this technique to transiently or constitutively activate a typical human oncogene, kRASG12V, in zebrafish embryos and investigate the developmental and tumorigenic phenotypes. We demonstrate the spatiotemporal control of oncogene expression in live zebrafish, and characterize the different tumorigenic probabilities when kRASG12V is expressed transiently or constitutively at different developmental stages. Moreover, we show that light can be used to activate oncogene expression in selected tissues and single cells without tissue-specific promoters. Our work presents a novel approach to initiate and study cancer in zebrafish, and the high spatiotemporal resolution of this method makes it a valuable tool for studying cancer initiation from single cells.
Asunto(s)
Transformación Celular Neoplásica , Neoplasias/etiología , Neoplasias/patología , Animales , Biomarcadores de Tumor , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Mutación , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Activación Transcripcional/efectos de la radiación , Pez CebraRESUMEN
Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST, hereafter called FAST) is a 14 kDa protein tag giving a bright green-yellow fluorescent complex upon interaction with the fluorogenic dye 4-hydroxy-3-methylbenzylidene rhodanine (HMBR). Here, we report a collection of fluorogens enabling tuning of the fluorescence color of FAST from green-yellow to orange and red. Beyond allowing the multicolor imaging of FAST-tagged proteins in live cells, these fluorogens enable dynamic color switching because of FAST's reversible labeling. This unprecedented behavior allows for selective detection of FAST-tagged proteins in cells expressing both green and red fluorescent species through two-color cross-correlation, opening up exciting prospects to overcome spectral crowding and push the frontiers of multiplexed imaging.
RESUMEN
Genetic labeling techniques allow for noninvasive lineage tracing of cells in vivo. Two-photon inducible activators provide spatial resolution for superficial cells, but labeling cells located deep within tissues is precluded by scattering of the far-red illumination required for two-photon photolysis. Three-photon illumination has been shown to overcome the limitations of two-photon microscopy for in vivo imaging of deep structures, but whether it can be used for photoactivation remains to be tested. Here we show, both theoretically and experimentally, that three-photon illumination overcomes scattering problems by combining longer wavelength excitation with high uncaging three-photon cross-section molecules. We prospectively labeled heart muscle cells in zebrafish embryos and found permanent labeling in their progeny in adult animals with negligible tissue damage. This technique allows for a noninvasive genetic manipulation in vivo with spatial, temporal and cell-type specificity, and may have wide applicability in experimental biology.
RESUMEN
The regulation of proteolysis is an efficient way to control protein function in cells. Here, we present a general strategy enabling to increase the spatiotemporal resolution of conditional proteolysis by using light activation as trigger. Our approach relies on the auxin-inducible degradation system obtained by transposing components of the plant auxin-dependent degradation pathway in mammalian cells. We developed a photoactivatable auxin that acts as a photoactivatable inducer of degradation. Upon local and short light illumination, auxin is released in cells and triggers the degradation of a protein of interest with spatiotemporal control.