Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642408

RESUMEN

Developmental and environmental constraints influence genome expression through complex panels of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals to gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications, are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we aim to update the current knowledge on the interaction between major redox mediators such as ROS, RNS and antioxidant, and epigenetic changes in plants. We will detail how redox status alters the post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling, to reprogram genome expression under environmental constraints.

2.
J Exp Bot ; 74(8): 2707-2725, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36715641

RESUMEN

In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glutatión/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Respuesta al Choque Térmico , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA