Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 148(15): 154706, 2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29679976

RESUMEN

Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

2.
Materials (Basel) ; 17(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38255584

RESUMEN

Magnesium, as one of the most abundant cations in the human body, plays an important role in both physiological and pathological processes. In this study, it was shown that a promising biomedical material, Mg-substituted hydroxyapatite (Mg-HA), can be synthesized via a fast mechanochemical method. For this method, the nature of magnesium-containing carriers was shown to be important. When using magnesium oxide as a source of magnesium, the partial insertion of magnesium cations into the apatite structure occurs. In contrast, when magnesium hydroxide or monomagnesium phosphate is used, single-phase Mg-HA is formed. Both experimental and theoretical investigations showed that an increase in the Mg content leads to a decrease in the lattice parameters and unit cell volume of Mg-HA. Density functional theory calculations showed the high sensitivity of the lattice parameters to the crystallographic position of the calcium site substituted by magnesium. It was shown experimentally that the insertion of magnesium cations decreases the thermal stability of hydroxyapatite. The thermal decomposition of Mg-HA leads to the formation of a mixture of stoichiometric HA, magnesium oxide, and Mg-substituted tricalcium phosphate phases.

3.
Materials (Basel) ; 16(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687640

RESUMEN

Hydroxyapatite (HAP) is the main mineral component of bones and teeth. It is widely used in medicine as a bone filler and coating for implants to promote new bone growth. Ion substitutions into the HAP structure highly affect its properties. One of the most important substituents is magnesium. This paper presents new results obtained using high-precision hybrid density functional theory calculations for Mg/Ca substitutions in HAP in a wide magnesium concentration range within a 2 × 2 × 2 supercell model. Experimental data on the mechanochemical synthesis of HAP-Mg samples with different Mg concentrations are also presented. A comparison between the experiment and the theory showed good agreement: the HAP-Mg unit cell parameters and volume decreased with increasing degree of Mg/Ca substitution. The changes in the distances between the Ca and O, Ca and H, and Mg and O ions upon Mg/Ca substitution in different calcium positions was analyzed. The resulting asymmetry and distortion of the cell parameters were evaluated. It was shown that bulk modulus, energy levels, and band gap depend on the degree of Mg substitutions in the Ca1 and Ca2 positions. The formation energies of Mg/Ca substitutions showed non-monotonic behavior that was different for Ca1 and Ca2 positions. The Ca2 position had a slightly higher probability (~5 meV/f.u.) of substitution than Ca1 position at a Mg concentration x = 0.5. At x = 1, substitution in both positions can coexist. The simulated IR spectra for different Mg/Ca substitutions showed that Mg in the Ca2 position changes the IR spectrum more significantly than Mg in the Ca1 position. Similar changes were recorded in the IR spectra of the synthesized samples. The electronic structure is shown to be sensitive to the number and position of substitutions, which may be used to tweak the optical properties of the HAP-Mg material.

4.
J Phys Chem B ; 113(14): 4614-8, 2009 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-19281202

RESUMEN

Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.


Asunto(s)
Aluminio/química , Silicio/química , Zeolitas/química , Estructura Molecular , Espectrometría por Rayos X/métodos
5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 4): 337-353, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30141419

RESUMEN

The spinel oxide AlV2O4 is a unique material, in which the formation of clusters is accompanied by atomic, charge and orbital ordering and a rhombohedral lattice distortion. In this work a theory of the structural phase transition in AlV2O4 is proposed. This theory is based on the study of the order-parameter symmetry, thermodynamics, electron density distribution, crystal chemistry and mechanisms of formation of the atomic and orbital structures of the rhombohedral phase. It is established that the critical order parameter is transformed according to irreducible representation k9(τ4) (in Kovalev notation) of the Fd \bar{3}m space group. Knowledge of the order-parameter symmetry allows us to show that the derived AlV2O4 rhombohedral structure is a result of displacements of all atom types and the ordering of Al atoms (1:1 order type in tetrahedral spinel sites), V atoms (1:1:6 order type in octahedral sites) and O atoms (1:1:3:3 order type), and the ordering of dxy, dxz and dyz orbitals. Application of the density functional theory showed that V atoms in the Kagomé sublattice formed separate trimers. Also, no sign of metallic bonding between separate vanadium trimers in the heptamer structure was found. The density functional theory study and the crystal chemical analysis of V-O bond lengths allowed us to assume the existence of dimers and trimers as main clusters in the structure of the AlV2O4 rhombohedral modification. The trimer model of the low-symmetry AlV2O4 structure is proposed. Within the Landau theory of phase transitions, typical diagrams of possible phase states are built. It is shown that phase states can be changed as a first-order phase transition close to the second order in the vicinity of tricritical points of the phase diagrams.

6.
J Phys Chem B ; 109(21): 10771-8, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16852309

RESUMEN

The local aluminum structure in zeolite mordenite was studied at temperatures up to 1000 K in a vacuum by Al K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The interatomic aluminum-oxygen distances and the number of coordinating oxygen atoms were determined by Fourier transform analyses of experimental Al K-edge XANES spectra and the fits of the nearest oxygen atoms contributions, using a limited number of variables. The values of fixed parameters for Fourier transform and fit are established from the spectrum of Na-mordenite, considered the reference compound for the studied zeolites H-mordenites, which was also used to test the accuracy and the stability of the determined structural parameters. To reveal the aluminum coordination in H-mordenite at various temperatures, the Fourier transform peak of the coordinating oxygen polyhedron was fitted first with a single-shell model, and the obtained structural information was refined by the fits, on the basis of the most plausible models for the aluminum coordination environment. The choice of such models for each temperature was performed according to the qualitative predictions on the aluminum local atomic structure provided by the preedge data analysis and 27Al magic angle spinning (MAS) NMR experiments. By this method, the presence of sixfold aluminum atoms, aside from the fourfold ones, in H-mordenite at room temperature was revealed quantitatively, and the concentrations of these mixed coordinations were determined; the structural distortion of the oxygen tetrahedron around aluminum in dehydrated H-mordenite at T = 575 K was found to be strong, and the corresponding Al-O distances for this distortion were obtained; for H-mordenite at 985 K, the presence of threefold coordinated aluminum atoms, aside from the fourfold ones, was revealed, and an estimate of the amount of threefold aluminum was given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA