Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(12): 2690-2704.e20, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295405

RESUMEN

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.


Asunto(s)
Vibrio cholerae , Animales , Humanos , Vibrio cholerae/metabolismo , Conducta Predatoria , Biopelículas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35182483

RESUMEN

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Asunto(s)
Infecciones Bacterianas , Listeriosis , Linfocitos B , Centro Germinal , Humanos , Monocitos
3.
Immunity ; 54(12): 2712-2723.e6, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34788598

RESUMEN

Interactions between intracellular bacteria and mononuclear phagocytes give rise to diverse cellular phenotypes that may determine the outcome of infection. Recent advances in single-cell RNA sequencing (scRNA-seq) have identified multiple subsets within the mononuclear population, but implications to their function during infection are limited. Here, we surveyed the mononuclear niche of intracellular Salmonella Typhimurium (S.Tm) during early systemic infection in mice. We described eclipse-like growth kinetics in the spleen, with a first phase of bacterial control mediated by tissue-resident red-pulp macrophages. A second phase involved extensive bacterial replication within a macrophage population characterized by CD9 expression. We demonstrated that CD9+ macrophages induced pathways for detoxificating oxidized lipids, that may be utilized by intracellular S.Tm. We established that CD9+ macrophages originated from non-classical monocytes (NCM), and NCM-depleted mice were more resistant to S.Tm infection. Our study defines macrophage subset-specific host-pathogen interactions that determine early infection dynamics and infection outcome of the entire organism.


Asunto(s)
Macrófagos/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/fisiología , Bazo/inmunología , Animales , Interacciones Huésped-Patógeno , Humanos , Espacio Intracelular , Metabolismo de los Lípidos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción , Análisis de la Célula Individual , Bazo/microbiología , Tetraspanina 29/metabolismo
4.
Cell ; 162(6): 1309-21, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26343579

RESUMEN

Encounters between immune cells and invading bacteria ultimately determine the course of infection. These interactions are usually measured in populations of cells, masking cell-to-cell variation that may be important for infection outcome. To characterize the gene expression variation that underlies distinct infection outcomes and monitor infection phenotypes, we developed an experimental system that combines single-cell RNA-seq with fluorescent markers. Probing the responses of individual macrophages to invading Salmonella, we find that variation between individual infected host cells is determined by the heterogeneous activity of bacterial factors in individual infecting bacteria. We illustrate how variable PhoPQ activity in the population of invading bacteria drives variable host type I IFN responses by modifying LPS in a subset of bacteria. This work demonstrates a causative link between host and bacterial variability, with cell-to-cell variation between different bacteria being sufficient to drive radically different host immune responses. This co-variation has implications for host-pathogen dynamics in vivo.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/inmunología , Salmonella typhimurium/fisiología , Animales , Interferón Tipo I/inmunología , Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos C57BL , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Organismos Libres de Patógenos Específicos
5.
Nature ; 606(7914): 570-575, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614218

RESUMEN

The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.


Asunto(s)
Vasos Sanguíneos , Transdiferenciación Celular , Vasos Linfáticos , Aletas de Animales/citología , Animales , Vasos Sanguíneos/citología , Linaje de la Célula , Células Endoteliales/citología , Vasos Linfáticos/citología , Pez Cebra
6.
Proc Natl Acad Sci U S A ; 120(28): e2218812120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399397

RESUMEN

Encounters between host cells and intracellular bacterial pathogens lead to complex phenotypes that determine the outcome of infection. Single-cell RNA sequencing (scRNA-seq) is increasingly used to study the host factors underlying diverse cellular phenotypes but has limited capacity to analyze the role of bacterial factors. Here, we developed scPAIR-seq, a single-cell approach to analyze infection with a pooled library of multiplex-tagged, barcoded bacterial mutants. Infected host cells and barcodes of intracellular bacterial mutants are both captured by scRNA-seq to functionally analyze mutant-dependent changes in host transcriptomes. We applied scPAIR-seq to macrophages infected with a library of Salmonella Typhimurium secretion system effector mutants. We analyzed redundancy between effectors and mutant-specific unique fingerprints and mapped the global virulence network of each individual effector by its impact on host immune pathways. ScPAIR-seq is a powerful tool to untangle bacterial virulence strategies and their complex interplay with host defense strategies that drive infection outcome.


Asunto(s)
Macrófagos , Salmonella typhimurium , Virulencia/genética , Macrófagos/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/genética
8.
Infect Immun ; 91(4): e0043822, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36939328

RESUMEN

Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.


Asunto(s)
Macrófagos , Salmonella , Macrófagos/microbiología , Bacterias , Interacciones Huésped-Patógeno
9.
Nat Rev Mol Cell Biol ; 12(2): 104-17, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21252999

RESUMEN

Human-made information relay systems invariably incorporate central regulatory components, which are mirrored in biological systems by dense feedback and feedforward loops. This type of system control is exemplified by positive and negative feedback loops (for example, receptor endocytosis and dephosphorylation) that enable growth factors and receptor Tyr kinases of the epidermal growth factor receptor (EGFR)/ERBB family to regulate cellular function. Recent studies show that the collection of feedback regulatory loops can perform computational tasks - such as decoding ligand specificity, transforming graded input signals into a digital output and regulating response kinetics. Aberrant signal processing and feedback regulation can lead to defects associated with pathologies such as cancer.


Asunto(s)
Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Transducción de Señal , Animales , Endocitosis , Humanos , Neoplasias/fisiopatología
10.
PLoS Pathog ; 13(5): e1006363, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505176

RESUMEN

A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/patogenicidad , Fagosomas/microbiología , Tuberculosis/microbiología , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Biblioteca de Genes , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Fagosomas/inmunología , Fenotipo , Tuberculosis/inmunología , Virulencia
11.
Mol Cell ; 42(4): 524-35, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21596316

RESUMEN

Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals.


Asunto(s)
Mama/citología , Factor de Crecimiento Epidérmico/fisiología , Células Epiteliales/citología , Mitosis , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Mama/efectos de los fármacos , Línea Celular , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Mitosis/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transcripción Genética
12.
Proc Natl Acad Sci U S A ; 109(46): 18839-44, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112163

RESUMEN

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Cabeza/embriología , Corazón/embriología , Mesodermo/embriología , Músculo Esquelético/embriología , Miocardio , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados
13.
Nat Cell Biol ; 9(8): 961-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643115

RESUMEN

Cell migration driven by the epidermal growth factor receptor (EGFR) propels morphogenesis and involves reorganization of the actin cytoskeleton. Although de novo transcription precedes migration, transcript identity remains largely unknown. Through their actin-binding domains, tensins link the cytoskeleton to integrin-based adhesion sites. Here we report that EGF downregulates tensin-3 expression, and concomitantly upregulates cten, a tensin family member that lacks the actin-binding domain. Knockdown of cten or tensin-3, respectively, impairs or enhances mammary cell migration. Furthermore, cten displaces tensin-3 from the cytoplasmic tail of integrin beta1, thereby instigating actin fibre disassembly. In invasive breast cancer, cten expression correlates not only with high EGFR and HER2, but also with metastasis to lymph nodes. Moreover, treatment of inflammatory breast cancer patients with an EGFR/HER2 dual-specificity kinase inhibitor significantly downregulated cten expression. In conclusion, a transcriptional tensin-3-cten switch may contribute to the metastasis of mammary cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Receptores ErbB , Femenino , Humanos , Proteínas de Microfilamentos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tensinas
14.
Nucleic Acids Res ; 40(21): 10614-27, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22977182

RESUMEN

MicroRNAs (miRs) function primarily as post-transcriptional negative regulators of gene expression through binding to their mRNA targets. Reliable prediction of a miR's targets is a considerable bioinformatic challenge of great importance for inferring the miR's function. Sequence-based prediction algorithms have high false-positive rates, are not in agreement, and are not biological context specific. Here we introduce CoSMic (Context-Specific MicroRNA analysis), an algorithm that combines sequence-based prediction with miR and mRNA expression data. CoSMic differs from existing methods--it identifies miRs that play active roles in the specific biological system of interest and predicts with less false positives their functional targets. We applied CoSMic to search for miRs that regulate the migratory response of human mammary cells to epidermal growth factor (EGF) stimulation. Several such miRs, whose putative targets were significantly enriched by migration processes were identified. We tested three of these miRs experimentally, and showed that they indeed affected the migratory phenotype; we also tested three negative controls. In comparison to other algorithms CoSMic indeed filters out false positives and allows improved identification of context-specific targets. CoSMic can greatly facilitate miR research in general and, in particular, advance our understanding of individual miRs' function in a specific context.


Asunto(s)
Algoritmos , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Línea Celular , Movimiento Celular , Silenciador del Gen , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/química , Fenotipo , ARN Mensajero/química , Análisis de Secuencia de ARN , Transcriptoma
15.
STAR Protoc ; 5(3): 103137, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878285

RESUMEN

Ribosome quantification in single cells is typically achieved through fluorescence tagging of ribosomal proteins. Here, we present a protocol for comparing ribosomal levels in bacteria at different growth stages using fluorescence in situ hybridization of rRNA (rRNA-FISH), eliminating the need for genetic engineering of the strain of interest. We detail the steps for preparing bacterial samples, staining with fluorescent probes, and acquiring data using flow cytometry and microscopy. Furthermore, we provide guidelines on controlling for proper labeling through signal localization analysis. For complete details on the use and execution of this protocol, please refer to Ciolli Mattioli et al.1.

16.
Methods Mol Biol ; 2784: 3-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502475

RESUMEN

In this chapter, we describe in detail how to perform a successful smFISH experiment and how to quantify mRNA transcripts in bacterial cells. The flexibility of the method allows for straightforward adaptation to different bacterial species and experimental conditions. Thanks to the feasibility of the approach, the method can easily be adapted by other laboratories. Finally, we believe that this method has a great potential to generate insights into the complicated life of bacteria.


Asunto(s)
Bacterias , ARN , Hibridación Fluorescente in Situ/métodos , ARN Mensajero/genética , Bacterias/genética
17.
FASEB J ; 26(4): 1582-92, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22198386

RESUMEN

The signaling pathways that commit cells to migration are incompletely understood. We employed human mammary cells and two stimuli: epidermal growth factor (EGF), which induced cellular migration, and serum factors, which stimulated cell growth. In addition to strong activation of ERK by EGF, and AKT by serum, early transcription remarkably differed: while EGF induced early growth response-1 (EGR1), and this was required for migration, serum induced c-Fos and FosB to enhance proliferation. We demonstrate that induction of EGR1 involves ERK-mediated down-regulation of microRNA-191 and phosphorylation of the ETS2 repressor factor (ERF) repressor, which subsequently leaves the nucleus. Unexpectedly, knockdown of ERF inhibited migration, which implies migratory roles for exported ERF molecules. On the other hand, chromatin immunoprecipitation identified a subset of direct EGR1 targets, including EGR1 autostimulation and SERPINB2, whose transcription is essential for EGF-induced cell migration. In summary, EGR1 and the EGF-ERK-ERF axis emerge from our study as major drivers of growth factor-induced mammary cell migration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glándulas Mamarias Humanas/citología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Femenino , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Análisis por Micromatrices , Proteoma/análisis , Proteínas Represoras/genética , Transducción de Señal/fisiología , Técnicas del Sistema de Dos Híbridos
18.
J Mammary Gland Biol Neoplasia ; 17(1): 3-14, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22327345

RESUMEN

Signaling networks are involved in development, as well as in malignancy of the mammary gland. Distinct external stimuli activate intricate signaling cascades, which culminate in the activation of specific transcriptional programs. These signal-specific transcriptional programs are instigated by transcription factors (TFs) encoded by the immediate early genes (IEGs), and they lead to diverse cellular outcomes, including oncogenesis. Hence, regulating the expression of IEGs is of great importance, and involves several complementary transcriptional and posttranscriptional mechanisms, the latter entails also microRNAs (miRNAs). miRNAs are a class of non-coding RNAs, which have been implicated in regulation of various aspects of signaling networks. Through examination of the basic characteristics of miRNA function, we highlight the benefits of using miRNAs as regulators of early TFs and signaling networks. We further focus on the role of miRNAs as regulators of IEGs, which shape the initial steps of signaling-induced transcription. We especially emphasize the role of miRNAs in buffering external noise and maintaining low basal activation of IEGs in the absence of proper stimuli.


Asunto(s)
Neoplasias de la Mama/genética , Genes Inmediatos-Precoces , MicroARNs/genética , Factores de Transcripción/genética , Neoplasias de la Mama/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/crecimiento & desarrollo , Glándulas Mamarias Humanas/patología , Transducción de Señal/genética
19.
Curr Opin Immunol ; 84: 102369, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473458

RESUMEN

Macrophages are phagocytic cells distributed across tissues that sustain homeostasis by constantly probing their local environment. Upon perturbations, macrophages rewire their energy metabolism to execute their immune programs. Intensive research in the field of immunometabolism highlights cell-intrinsic immunometabolites such as succinate and itaconate as immunomodulatory signals. A role for cell-extrinsic stimuli now emerges with evidence for signals that shape macrophages' metabolism in a tissue-specific manner. In this review, we will cover macrophage immunometabolism in the gut, a complex metabolic and immunologically active tissue. During homeostasis, gut macrophages are constantly exposed to pro-inflammatory ligands from the microbiota, and in contrast, are balanced by microbiota-derived anti-inflammatory metabolites. Given their extensive metabolic changes during activation, spatial analyses of the tissue will allow the characterization of metabolic niches of macrophage in the gut. Identifying metabolic perturbations of macrophage subsets during chronic inflammation and infection can direct future tissue-specific metabolotherapies.


Asunto(s)
Metabolismo Energético , Macrófagos , Humanos , Ácido Succínico/metabolismo , Inmunidad , Inflamación
20.
Elife ; 122023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36691727

RESUMEN

Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in the biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly recognized that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during its interaction with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. To unravel the bacterial lifestyle switch, we analyzed bacterial transcriptomes in response to exudates derived from algae in exponential growth and stationary phase, which supported the Sulfitobacter D7 coexistence and pathogenicity lifestyles, respectively. In pathogenic mode, Sulfitobacter D7 upregulated flagellar motility and diverse transport systems, presumably to maximize assimilation of E. huxleyi-derived metabolites released by algal cells upon cell death. Algal dimethylsulfoniopropionate (DMSP) was a pivotal signaling molecule that mediated the transition between the lifestyles, supporting our previous findings. However, the coexisting and pathogenic lifestyles were evident only in the presence of additional algal metabolites. Specifically, we discovered that algae-produced benzoate promoted the growth of Sulfitobacter D7 and hindered the DMSP-induced lifestyle switch to pathogenicity, demonstrating that benzoate is important for maintaining the coexistence of algae and bacteria. We propose that bacteria can sense the physiological state of the algal host through changes in the metabolic composition, which will determine the bacterial lifestyle during interaction.


Asunto(s)
Haptophyta , Rhodobacteraceae , Fitoplancton/metabolismo , Fitoplancton/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA