Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(27): E3609-18, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100888

RESUMEN

Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.


Asunto(s)
Cuerpo Estriado/metabolismo , Multimerización de Proteína , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas del Receptor de Adenosina A2/metabolismo , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Unión Competitiva/efectos de los fármacos , Transferencia de Energía por Resonancia de Bioluminiscencia , Células CHO , Cricetinae , Cricetulus , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Cinética , Masculino , Microscopía Confocal , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Receptor de Adenosina A2A/química , Receptores de Dopamina D2/química , Ovinos , Factores de Tiempo
2.
Anesth Analg ; 106(6): 1882-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18499627

RESUMEN

BACKGROUND: The presence of A(2A) receptors in the dorsal horn of the spinal cord remains controversial. At this level, activation of N-methyl-d-aspartate (NMDA) receptors induces wind-up, which is clinically expressed as hyperalgesia. Inhibition of NMDA receptor currents after activation of A(2A) receptors has been shown in rat neostriatal neurons. In this study, we sought to establish the presence of adenosine A(2A) receptors in the lamina II of the rat lumbar dorsal horn neurons and investigated whether the activation of A(2A) receptors is able to modulate NMDA receptor currents. METHODS: Experiments were conducted in the rat lumbar spinal cord. The presence of adenosine A(2A) receptor transcripts inside the lumbar spinal cord is assessed with the reverse transcriptase polymerase chain reaction (RT-PCR) technique. Western blot experiments are performed at the same level. The RT-PCR technique is also performed specifically in the lamina II, and the presence of adenosine A(2A) receptor transcripts is assessed in neurons from the lamina II with the single-cell RT-PCR technique. The effect of adenosine A(2A) receptor activation on NMDA receptor currents is studied by the whole-cell configuration of the patch clamp technique. RESULTS: RT-PCR performed on the lumbar spinal cord revealed the presence of adenosine A(2A) receptor transcripts. Western blot experiments revealed the presence of A(2A) receptors in the lumbar spinal cord. RT-PCR performed on the substantia gelatinosa also revealed the presence of adenosine A(2A) receptor transcripts. Finally, single cell RT-PCR revealed the presence of adenosine A(2A) receptor transcripts in a sample of lamina II neurons. Patch clamp recordings showed an inhibition of NMDA currents during the application of a selective A(2A) agonist. CONCLUSIONS: These results demonstrate the presence of A(2A) receptor on neurons from the substantia gelatinosa of the rat lumbar dorsal horn and the inhibition of NMDA-induced currents by the application of a selective A(2A) receptor agonist. Therefore, A(2A) receptor ligands could modulate pain processing at the spinal cord level.


Asunto(s)
Células del Asta Posterior/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2 , Animales , Western Blotting , Glicina/metabolismo , Región Lumbosacra , Potenciales de la Membrana , N-Metilaspartato/metabolismo , Dolor/metabolismo , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Células del Asta Posterior/efectos de los fármacos , ARN Mensajero/análisis , Ratas , Ratas Wistar , Receptor de Adenosina A2A/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/efectos de los fármacos , Sustancia Gelatinosa/metabolismo
3.
Brain Res ; 1059(2): 189-96, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16168392

RESUMEN

Regulation of voltage-gated sodium channels is crucial to firing patterns that constitute the output of medium spiny neurons (MSN), projecting neurons of the striatum. This modulation is thus critical for the final integration of information processed within the striatum. It has been shown that the adenylate cyclase pathway reduces sodium currents in MSN through channel phosphorylation by cAMP-dependent protein kinase. However, it is unknown whether a phospholipase C (PLC)-mediated signaling cascade could also modulate voltage-gated sodium channels within MSN. Using the whole-cell patch clamp technique, we investigated the effects of activation of two key components in PLC-mediated signaling cascades: protein kinase C (PKC) and inositol-1,4,5-triphosphate (IP(3)) receptors on voltage-dependent sodium current. Cellular dialysis with phorbol 12-myristate 13-acetate, an activator of PKC, significantly reduced peak sodium current amplitude, while adenophostin A, an activator of IP(3) receptors, significantly increased peak sodium current amplitude. This effect of adenophostin was abolished by calcium chelation or by FK506, an inhibitor of calcineurin. These results suggest an antagonistic role of PKC and IP(3) in the modulation of striatal voltage-gated sodium channels, peak current amplitude being decreased through phosphorylation by PKC and increased through dephosphorylation by calcineurin.


Asunto(s)
Canales de Calcio/metabolismo , Neostriado/enzimología , Neuronas/enzimología , Receptor Cross-Talk/fisiología , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Neostriado/citología , Neuronas/citología , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptores de Cinasa C Activada , Transducción de Señal/fisiología
4.
Neuropsychopharmacology ; 34(4): 972-86, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18800071

RESUMEN

Bursting activity of striatal medium spiny neurons results from membrane potential oscillations between a down- and an upstate that could be regulated by G-protein-coupled receptors. Among these, dopamine D(2) and adenosine A(2A) receptors are highly enriched in striatal neurons and exhibit strong interactions whose physiological significance and molecular mechanisms remain partially unclear. More particularly, respective involvements of common intracellular signaling cascades and A(2A)-D(2) receptor heteromerization remain unknown. Here we show, by performing perforated-patch-clamp recordings on brain slices and loading competitive peptides, that D(2) and A(2A) receptors regulate the induction by N-methyl-D-aspartate of a depolarized membrane potential plateau through mechanisms relying upon specific protein-protein interactions. Indeed, D(2) receptor activation abolished transitions between a hyperpolarized resting potential and a depolarized plateau potential by regulating the Ca(V)1.3a calcium channel activity through interactions with scaffold proteins Shank1/3. Noticeably, A(2A) receptor activation had no effect per se but fully reversed the effects of D(2) receptor activation through a mechanism in which A(2A)-D(2) receptors heteromerization is strictly mandatory, demonstrating therefore a first direct physiological relevance of these heteromers. Our results show that membrane potential transitions and firing patterns in striatal neurons are tightly controlled by D(2) and A(2A) receptors through specific protein-protein interactions including A(2A)-D(2) receptors heteromerization.


Asunto(s)
N-Metilaspartato/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Adenosina A2/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Núcleo Accumbens/citología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Multimerización de Proteína , Ratas , Ratas Wistar
5.
PLoS One ; 4(9): e6908, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19730738

RESUMEN

The striatum is the major input structure of basal ganglia and is involved in adaptive control of behaviour through the selection of relevant informations. Dopaminergic neurons that innervate striatum die in Parkinson disease, leading to inefficient adaptive behaviour. Neuronal activity of striatal medium spiny neurons (MSN) is modulated by dopamine receptors. Although dopamine signalling had received substantial attention, consequences of dopamine depletion on MSN intrinsic excitability remain unclear. Here we show, by performing perforated patch clamp recordings on brain slices, that dopamine depletion leads to an increase in MSN intrinsic excitability through the decrease of an inactivating A-type potassium current, I(A). Despite the large decrease in their excitatory synaptic inputs determined by the decreased dendritic spines density and the increase in minimal current to evoke the first EPSP, this increase in intrinsic excitability resulted in an enhanced responsiveness to their remaining synapses, allowing them to fire similarly or more efficiently following input stimulation than in control condition. Therefore, this increase in intrinsic excitability through the regulation of I(A) represents a form of homeostatic plasticity allowing neurons to compensate for perturbations in synaptic transmission and to promote stability in firing. The present observations show that this homeostatic ability to maintain firing rates within functional range also occurs in pathological conditions, allowing stabilizing neural computation within affected neuronal networks.


Asunto(s)
Dopamina/fisiología , Plasticidad Neuronal , Animales , Cuerpo Estriado , Dopamina/metabolismo , Homeostasis , Hibridación in Situ , Modelos Biológicos , Neostriado/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores Dopaminérgicos/metabolismo , Transmisión Sináptica , alfa-Metiltirosina/química
6.
J Neurophysiol ; 90(2): 559-65, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12711714

RESUMEN

The mechanism by which dopamine induces or facilitates neurohypophysial hormone release is not completely understood. Because oxytocin- and vasopressin-secreting supraoptic neurons are under the control of a prominent GABAergic inhibition, we investigated the possibility that dopamine exerts its action by modulating GABA-mediated transmission. Whole cell voltage-clamp recordings of supraoptic neurons were carried out in acute hypothalamic slices to determine the action of dopamine on inhibitory postsynaptic currents. Application of dopamine caused a consistent and reversible reduction in the frequency, but not the amplitude, of miniature synaptic events, indicating that dopamine was acting presynaptically to reduce GABAergic transmission. The subtype of dopamine receptor involved in this response was characterized pharmacologically. Dopamine inhibitory action was greatly reduced by two highly selective D4 receptor antagonists L745,870 and L750,667 and to a lower extent by the antipsychotic drug clozapine but was unaffected by SCH 23390 and sulpiride, D1/D5 and D2/D3 receptor antagonists, respectively. In agreement with these results, the action of dopamine was mimicked by the potent D4 receptor agonist PD168077 but not by SKF81297 and bromocriptine, D1/D5 and D2/D3 receptor agonists, respectively. Dopamine and PD168077 also reduced the amplitude of evoked inhibitory postsynaptic currents, an effect that was accompanied by an increase in paired-pulse facilitation. These data clearly indicate that D4 receptors are located on GABA terminals in the supraoptic nucleus and that their activation reduces GABA release in the supraoptic nucleus. Therefore dopaminergic facilitation of neurohypophysial hormone release appears to result, at least in part, from disinhibition of magnocellular neurons caused by the depression of GABAergic transmission.


Asunto(s)
Dopamina/fisiología , Inhibición Neural , Neuronas/fisiología , Terminales Presinápticos/fisiología , Receptores de Dopamina D2/fisiología , Núcleo Supraóptico/fisiología , Transmisión Sináptica , Ácido gamma-Aminobutírico/fisiología , Animales , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2 , Relación Dosis-Respuesta a Droga , Femenino , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D4 , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA