Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Sci Technol ; 57(19): 7547-7558, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37134233

RESUMEN

Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.


Asunto(s)
Nanopartículas , Níquel , Níquel/química , Glycine max , Nitrógeno , Suelo
2.
Plant Physiol Biochem ; 206: 108244, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071802

RESUMEN

Nanotechnology offers many potential solutions for sustainable agroecosystem, including improvement in nutrient use efficiency, efficacy of pest management, and minimizing the adverse environmental effects of agricultural production. Herein, we first highlighted the integrated application of nanotechnology and precision agriculture for sustainable productivity. Application of nanoparticle mediated material and advanced biosensors in precision agriculture is only possible by nanochips or nanosensors. Nanosensors offers the measurement of various stresses, soil quality parameters and detection of heavy metals along with the enhanced data collection, enabling precise decision-making and resource management in agricultural systems. Nanoencapsulation of conventional chemical fertilizers (known as nanofertilizers), and pesticides (known as nanopesticides) helps in sustained and slow release of chemicals to soils and results in precise dosage to plants. Further, nano-based disease detection kits are popular tools for early and speedy detection of viral diseases. Many other innovative approaches including biosynthesized nanoparticles have been evaluated and proposed at various scales, but in fact there are some barriers for practical application of nanotechnology in soil-plant system, including safety and regulatory concerns, efficient delivery at field levels, and consumer acceptance. Finally, we outlined the policy options and actions required for sustainable agricultural productivity, and proposed various research pathways that may help to overcome the upcoming challenges regarding practical implications of nanotechnology.


Asunto(s)
Agricultura , Plaguicidas , Agricultura/métodos , Nanotecnología/métodos , Producción de Cultivos/métodos , Fertilizantes/análisis , Plantas , Suelo
3.
Chemosphere ; 356: 141767, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537715

RESUMEN

The current review highlights the complex behavior of thallium (Tl) in soil and plant systems, offering insight into its hazardous characteristics and far-reaching implications. The research investigates the many sources of Tl, from its natural existence in the earth crust to its increased release through anthropogenic activities such as industrial operations and mining. Soil emerges as a significant reservoir of Tl, with diverse physicochemical variables influencing bioavailability and entrance into the food chain, notably in Brassicaceae family members. Additionally, the study highlights a critical knowledge gap concerning Tl influence on legumes (e.g., soybean), underlining the pressing demand for additional studies in this crucial sector. Despite the importance of leguminous crops in the world food supply and soil fertility, the possible impacts of Tl on these crops have received little attention. As we traverse the ecological complexity of Tl, this review advocates the collaborative research efforts to eliminate crucial gaps and provide solutions for reducing Tl detrimental impacts on soil and plant systems. This effort intends to pave the path for sustainable agricultural practices by emphasizing the creation of Tl-tolerant legume varieties and revealing the complicated dynamics of Tl-plant interactions, assuring the long-term durability of our food systems against the danger of Tl toxicity.


Asunto(s)
Contaminantes del Suelo , Suelo , Talio , Talio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Productos Agrícolas/metabolismo , Agricultura , Plantas/metabolismo , Monitoreo del Ambiente , Fabaceae/metabolismo , Fabaceae/crecimiento & desarrollo
4.
Environ Sci Process Impacts ; 26(5): 832-842, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38619070

RESUMEN

Soil and terrestrial contamination with microplastics and nanoplastics has been discussed extensively, while tire wear particles (TWPs) have been largely overlooked. We investigated the root-surface interactions and growth response of mung bean (Vigna radiata L.) plants exposed to tire wear particles (TWPs) (0.05, 0.1, and 0.25% w/w) and nickel sulfate (50 and 100 mg kg-1 NiSO4) alone and in co-exposure scenarios for the full life cycle (105 days) under soil conditions. The results show that TWPs adhered to the root surface and reduced the water and nutrient uptake by the plant, particularly at higher concentrations of TWPs (0.25% w/w), without any observed organic contaminant accumulation in the root tissue. TWPs alone at 0.01, 0.1, and 0.25% (w/w) decreased mung bean yield by 11, 28, and 52%, respectively. Co-exposure to TWPs at 0.01, 0.1 and 0.25% w/w with 100 mg kg-1 NiSO4 decreased yield by 73, 79 and 88%, respectively. However, co-exposure to TWPs at 0.01 and 0.1% w/w with 50 mg kg-1 NiSO4 enhanced the yield by 32% and 7%, respectively. These changes in yield and nutritional aspects appear to be linked to Ni's regulatory influence on mineral homeostasis. Moreover, exposure to NiSO4 at 100 mg kg-1 increased Ni uptake in the root, shoot, and grain by 9, 26, and 20-fold, respectively as compared to the unamended control; this corresponded to increased antioxidant enzyme activity (10-127%) as compared to the control. TWPs caused blockages, significantly reducing plant yield and altering nutrient dynamics, highlighting emerging risks to plant health.


Asunto(s)
Níquel , Contaminantes del Suelo , Vigna , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Vigna/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Nutrientes/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Suelo/química
5.
Sci Total Environ ; 904: 166438, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633397

RESUMEN

The increasing footprints of lithium (Li) in agroecosystems combined with limited recycling options have raised uncertain consequences for important crops. Nitrogen (N2)-fixation by legumes is an important biological response process, but the cause and effect of Li exposure on plant root-nodule symbiosis and biological N2-fixation (BNF) potential are still unclear. Soybean as a model plant was exposed to Li at low (25 mg kg-1), medium (50 mg kg-1), and high (100 mg kg-1) concentrations. We found that soybean growth and nodulation capacity had a concentration-dependent response to Li. Li at 100 mg kg-1 reduced the nodule numbers, weight, and BNF potential of soybean in comparison to the low and medium levels. Significant shift in soybean growth and BNF after exposure to Li were associated with alteration in the nodule metabolic pathways involved in nitrogen uptake and metabolism (urea, glutamine and glutamate). Importantly, poor soybean nodulation after high Li exposure was due in part to a decreased abundance of bacterium Ensifer in the nodule bacterial community. Also, the dominant N2-fixing bacterium Ensifer was significantly correlated with carbon and nitrogen metabolic pathways. The findings of our study offer mechanistic insights into the environmental and biological impacts of Li on soybean root-nodule symbiosis and N2-acquisition and provide a pathway to develop strategies to mitigate the challenges posed by Li in agroecosystems.


Asunto(s)
Glycine max , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta , Litio , Proteínas de Plantas/metabolismo , Simbiosis , Nitrógeno/metabolismo
6.
Environ Pollut ; 320: 121063, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639045

RESUMEN

Rice is known to accumulate cadmium (Cd) in its grains, causing a severe threat to billions of people worldwide. The possible phytotoxicity and mechanism of 50-200 mg/L hydroxyapatite NPs (nHA), iron oxide NPs (nFe2O3) or nano zero valent iron (nZVI) co-exposed with Cd (100 µM) in rice seedlings were investigated. Three types of nanoparticles significantly reduced the bioaccumulation of Cd in rice shoots by 16-63%, with nZVI showing the greatest effect, followed by nHA and nFe2O3. A decrease in Cd content in the roots was observed only in the nZVI treatment, with values ranging from 8 to 19%. Correspondingly, nZVI showed the best results in promoting plant growth, increasing rice plant height, shoot and root biomass by 13%, 29% and 42%. In vitro studies showed that nZVI reduced the content of Cd in the solution by 20-52% through adsorption, which might have contributed to the immobilization of Cd in root. Importantly, the nZVI treatment resulted in 267% more iron plaques on the root surface, which acted as a barrier to hinder the entry of Cd. Moreover, all three nanoparticles significantly reduced the oxidative stress induced by Cd by regulating phytohormones, phytochelatin, inorganic homeostasis and the expression of genes associated with Cd uptake and transport. Overall, this study elucidates for the first time the multiple complementing mechanisms for some nanoparticles to reduce Cd uptake and transport in rice and provides theoretical basis for applying nanoparticles for reducing Cd accumulation in edible plants.


Asunto(s)
Cadmio , Hierro , Nanopartículas , Oryza , Contaminantes del Suelo , Humanos , Cadmio/análisis , Cadmio/toxicidad , Hierro/análisis , Nanopartículas/toxicidad , Oryza/metabolismo , Fitoquelatinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantones , Contaminantes del Suelo/análisis
7.
Chemosphere ; 310: 136663, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36206918

RESUMEN

Lithium (Li) is gaining attention due to rapid rise in modern industries but their ultimate fingerprints on plants are not well established. Herein, we executed a meta-analysis of the existing recent literature investigating the impact of Li sources and levels on plant species under different growth conditions to understand the existing state of knowledge. Toxic effects of Li exposure in plants varies as a function of medium and interestingly, more negative responses are reported in hydroponic media as compared to soil and foliar application. Additionally, toxic effects of Li vary with Li source materials and LiCl more negatively affected plant development parameters such as plant germination (n = 48) and root biomass (n = 57) and recorded highly uptake in plants (n = 78), while LiNO3 has more negative effects on shoot biomass. The Li at <50 mg L-1 concentrations significantly influenced the plant physiological indicators including plant germination and root biomass, while 50-500 mg L-1 Li concentration influence the biochemical parameters. The dose-response relationship (EC50) ranges regarding the exposure medium of Li sources in plant species were observed 24.6-196.7 ppm respectively. The uptake potential of Li is dose-dependent and their translocation/bioaccumulation remains unknown. Future work should include full life cycle studies of the crops to elucidate the bioaccumulation of Li in edible tissues and to investigate possible trophic transfer of Li.


Asunto(s)
Litio , Contaminantes del Suelo , Litio/análisis , Contaminación Ambiental/análisis , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Bioacumulación , Plantas
8.
Sci Total Environ ; 894: 164861, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343875

RESUMEN

The application of pristine nanomaterials (PNMs) for environment remediation remains challenging due to inherently high potential for aggregation, low stability, sub-optimum efficiency, and non-uniformity in size and toxicity. Conversely, modified nanomaterials (MNMs) approaches have shown significant potential to enhance the technical and economic efficiency of conventional nanoscale remediation strategies by decreasing aggregation of nanomaterials by imparting electrostatic, electrosteric or steric repulsion between particles. Furthermore, the solubility enhancing agents in MNMs have been shown to increase metal bioavailability and accelerate the breakdown of pollutants. As such, it is imperative to modify nanomaterials for unlocking their full potential and expanding their range of applications. However, there is no comprehensive review in the literature that evaluates the efficacy and environmental impact of MNMs against PNMs in the environment. This critical review identifies major barriers preventing the widescale application of nano-enabled remediation and discusses strategies to increase the stability and activity of nanomaterials at reaction sites. The higher reactivity and versatility of MNMs, along with novel properties and functionalities, enable effective removal of a range of chemical pollutants from complex environmental matrices. Additionally, MNMs show significant improvement in mobility, reactivity, and controlled and targeted release of active ingredients for in situ remediation. However, the uncertainties associated with the adverse effects of some modification agents of MNMs are not well-understood, and require further in-depth investigations. Overall, our findings show that MNMs are potentially more efficient, cost-effective, and resilient for remediation of soil and sediment, water, and air pollution than PNMs. The possible action mechanisms of MNMs have been demonstrated for different environmental compartments. Conclusively, this work provides a path forward for developing effective nano-enabled remediation technologies with MNMs, which are widely applicable to a range of environmental contamination scenarios.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanoestructuras , Nanoestructuras/toxicidad , Contaminación Ambiental , Metales
9.
Environ Sci Ecotechnol ; 15: 100252, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36891261

RESUMEN

Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.

10.
Plant Physiol Biochem ; 204: 108132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918078

RESUMEN

Microplastics (MPx) and nanoplastics (NPx) are increasingly accumulating in terrestrial ecosystems, heightening concerns about their potential adverse effects on human health via the food chain. Techniques aimed at recovering the most challenging colloidal fractions of MPx and NPx, especially for analytical purposes, are limited. This systematic review emphasises the absence of a universal, efficient, and cost-effective analytical method as the primary hindrance to studying MPx and NPx in soil and plant samples. The study reveals that several methods, including density separation, organic matter removal, and filtration, are utilized to detect MPx or NPx in soil through vibrational spectroscopy and visual identification. Instruments such as Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and fluorescence microscopy are employed to identify MPx and NPx in plant tissue. In extraction procedures, organic solvents and sonication are used to isolate NPx from plant tissues, while Pyrolysis GC-MS quantifies the plastics. SEM and TEM serve to observe and characterize NPx within plant tissues. Additionally, FTIR and fluorescence microscopy are utilized to identify polymers of MPx and NPx based on their spectral characteristics and fluorescence signals. The findings from this review clarify the identification and quantification methods for MPx and NPx in soil and plant systems and provide a comprehensive methodology for assessing MPx/NPx in the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos , Suelo/química , Ecosistema , Polímeros
11.
Environ Int ; 178: 107985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364304

RESUMEN

Steroid estrogens (SEs) accumulate in agro-food systems through wastewater treatment and dairy manure, but very little is known about their potential impact on plants and dietary risk to human health. We conducted a meta-analysis to address key questions including, how plants respond to SEs under different environmental conditions, what is the accumulation potential of SEs in distinct plant families, and associated daily dietary intake risks to humans. Based on 517 endpoints, we revealed that various crop species show a heterogeneous response to SEs types (n = 140), SEs concentrations (n = 141), and exposure medium (n = 166). A subsidy-stress response was observed in terms of SEs accumulation for plant growth. The bioaccumulation of SE in plants was shown to be greatest in sand, followed by soil, and hydroponic media. Plants exposed to SEs exhibit considerable changes in physiological and biochemical characteristics. Surprisingly, food crops such as carrot and potato were found as major source of SEs daily intake in food chain but their consequences remains largely unknown. Further field-oriented research is needed to unveil the threshold levels for SEs in soil-plant systems as it may pose a global threat to human health. The state of knowledge presented here may guide towards urgently needed future investigations in this field for reducing the risk in SEs in agro-food systems.


Asunto(s)
Estrógenos , Contaminantes del Suelo , Humanos , Estrógenos/toxicidad , Estrógenos/análisis , Productos Agrícolas , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
12.
SICOT J ; 8: 28, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766820

RESUMEN

INTRODUCTION: Aspirin is widely used for the prevention of venous thromboembolism (VTE) after total hip arthroplasty (THA) and total knee arthroplasty (TKA). It is well-established that the bleeding and wound complication risk for aspirin is low or equivalent to the other anticoagulant agents, but there is still ongoing controversy regarding the efficacy of aspirin for VTE prophylaxis. The current HSE (2012) guideline suggests 72 h of enoxaparin and 4 weeks of Aspirin therapy. But is this practice still relevant with more recent guidelines, NICE (2021) and SIGN (2014) suggesting that Aspirin is not recommended as a single pharmacological agent for VTE prophylaxis. METHOD: A Retrospective review was performed of a single centre, between January 2016 and May 2021 assessing for symptomatic VTE post-THA and TKA. All the patients received enoxaparin and aspirin as per the HSE guidelines. Using NIMIS we assessed which patients received a workup for potential symptomatic VTE and who had a confirmed VTE within 3 months post-surgery. The secondary outcome was mortality within 3 months post-surgery. RESULTS: A total of 1178 patients (721 undergoing THR and 457 undergoing TKR) were included in the study. The number of patients who received a workup for potential symptomatic VTE was 124 of 1178 (10.53%). VTE occurred in 13 of 721 patients (1.80%) of the THR patients and 1 of 457 (0.22%) of the TKR patients, and a total of 14 of 1178 patients (1.19%). Of these 7 (0.59%) patients developed a DVT and 7 (0.59%) a PE. No patients suffered a fatal pulmonary embolism within 90 days of index surgery nor any other cause of mortality. CONCLUSION: Aspirin is not only still relevant but can be considered as one of the most optimal pharmacological agents in preventing VTE after THA and TKA.

13.
NanoImpact ; 25: 100388, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559894

RESUMEN

Iron (Fe) deficiency is a pervasive nutritional disorder, and producing vegetables enriched with Fe as a dietary source is imperative. Herein, Fe3O4, FeO(OH), α-Fe2O3, ß-Fe2O3, γ-Fe3O4, and nZVI nanoparticles (NPs) were applied in soil as fertilizer to enhance the Fe nutrition in cherry radish. The highest enhancement of Fe content (58%) was observed in Fe3O4 treatment at 100 mg kg-1, followed by FeO(OH) (49%), α-Fe2O3 (24%), nZVI (14%), ß-Fe2O3 (13%) and γ-Fe3O4 (4%). The daily intake of Fe was 97-104% and 77-91% with Fe3O4 and FeO(OH) at 100-200 mg kg-1, respectively. Moreover, the zinc, vitamin C and crude protein contents were also increased by 37, 48 and 67% under Fe3O4 treatment as compared to control. Fe3O4 at 100 mg kg-1 also increased the essential amino acids (phenylalanine, leucine and isoleucine) contents by 11-14%. These data suggest that Fe3O4 and FeO(OH) NPs could be effective nanofertilizers to enhance Fe nutrition in plants.


Asunto(s)
Nanopartículas , Raphanus , Fertilizantes , Hierro , Valor Nutritivo
14.
J Hazard Mater ; 415: 125574, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756203

RESUMEN

The massive application of rare earth elements (REEs) in electronic industries cause their inevitable release into the environment; however, its effects on soil biota remain largely unaddressed. We investigated the E. fetida detoxification potential of nano and bulk La2O3 and Yb2O3 and their potential impact on biochemical and genetic markers at 50, 100, 200, 500 and 1000 mg kg-1 concentration. We found that earthworms bioremediate 3-15% La2O3 and Yb2O3 contaminated soil at low and medium levels, while this potential was limited at higher levels. Nano and bulk La2O3 and Yb2O3 treatment induced neurotoxicity in earthworm by inhibiting acetylcholinesterase by 49-65% and 22-36% at 500 and 1000 mg kg-1, respectively. Nano La2O3 proved to be highly detrimental, mainly through oxidative stress and subsequent failure of antioxidant system. Nano La2O3 and Yb2O3 at 100 mg kg-1 significantly down-regulated the expression of annetocin mRNA in the parental and progeny earthworms by 50% and 20%, which is crucial for earthworm reproduction. Similarly, expression level of heat shock protein 70 (HSP70) and metallothionein was significantly upregulated in both generations at medium exposure level. Histological observations showed that nano REEs at 200 mg kg-1 induced drastic changes in the intestinal epithelium and typhlosole of E. fetida. To date, our results enhance the understanding of interaction between REEs and earthworms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Lantano/toxicidad , Oligoquetos/genética , Óxidos/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Iterbio
15.
Nanomaterials (Basel) ; 11(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34835700

RESUMEN

The ubiquitous presence of microplastics (MPs) and nanoplastics (NPs) in the environment is an undeniable and serious concern due to their higher persistence and extensive use in agricultural production. This review highlights the sources and fate of MPs and NPs in soil and their uptake, translocation, and physiological effects in the plant system. We provide the current snapshot of the latest reported studies with the majority of literature spanning the last five years. We draw attention to the potential risk of MPs and NPs in modern agriculture and their effects on plant growth and development. We also highlight their uptake and transport pathways in roots and leaves via different exposure methods in plants. Conclusively, agricultural practices, climate changes (wet weather and heavy rainfall), and soil organisms play a major role in transporting MPs and NPs in soil. NPs are more prone to enter plant cell walls as compared to MPs. Furthermore, transpiration pull is the dominant factor in the plant uptake and translocation of plastic particles. MPs have negligible negative effects on plant physiological and biochemical indicators. Overall, there is a dire need to establish long-term studies for a better understanding of their fate and associated risks mechanisms in realistic environment scenarios for safe agricultural functions.

16.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374410

RESUMEN

Nanotechnology is playing a significant role in addressing a vast range of environmental challenges by providing innovative and effective solutions. Heavy metal (HM) contamination has gained considerable attention in recent years due their rapidly increasing concentrations in agricultural soil. Due to their unique physiochemical properties, nanoparticles (NPs) can be effectively applied for stress alleviation. In this review, we explore the current status of the literature regarding nano-enabled agriculture retrieved from the Web of Science databases and published from January 2010 to November 2020, with most of our sources spanning the past five years. We briefly discuss uptake and transport mechanisms, application methods (soil, hydroponic and foliar), exposure concentrations, and their impact on plant growth and development. The current literature contained sufficient information about NPs behavior in plants in the presence of pollutants, highlighting the alleviation mechanism to overcome the HM stress. Furthermore, we present a broad overview of recent advances regarding HM stress and the possible mechanism of interaction between NPs and HM in the agricultural system. Additionally, this review article will be supportive for the understanding of phytoremediation and micro-remediation of contaminated soils and also highlights the future research needs for the combined application of NPs in the soil for sustainable agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA