Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Oper Dent ; 49(2): 178-188, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38196082

RESUMEN

This study examined the influence of cariogenic environments on the surface roughness of ion-releasing restorative materials (IRMs). Custom-made stainless steel molds with holes of 5 mm × 2mm were used to fabricate 60 disc-shaped specimens of each of the following materials: Activa Bioactive (AV), Beautifil Bulk Restorative (BB), Cention N (Bulk-fill) (CN), and Filtek Z350XT (FZ) (Control). Baseline surface roughness (Ra) measurements were obtained using an optical 3D measurement machine (Alicona Imaging GmbH, Graz, Austria). The specimens were then randomly divided into five subgroups (n=12) and exposed to 10 ml of the following mediums at 37°C: distilled water (DW), demineralization solution (DM), remineralization solution (RM), pH cycling (PC) and air (AR) (control). Ra measurements were again recorded after one week and one month, followed by statistical evaluations with two-way analysis of variance (ANOVA) to determine interactions between materials and mediums. One-way ANOVA and post hoc Games Howell tests were performed for intergroup comparisons at a significance level of 0.05. Mean Ra values ranged from 0.085 ± 0.004 (µm) to 0.198 ± 0.001 µm for the various material-medium combinations. All IRMs showed significant differences in Ra values after exposure to the aqueous mediums. The smoothest surfaces were observed in the AR for all materials. When comparing materials, AV presented the roughest surfaces for all mediums. All IRM materials showed increased surface roughness over time in all cariogenic environments but were below the threshold value for bacterial adhesion, except for AV 1-month post immersion with pH cycling. Therefore, besides AV, the surface roughness of IRMs did not deteriorate to an extent that it is clinically relevant.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Resinas Compuestas/uso terapéutico , Ensayo de Materiales , Agua , Adhesión Bacteriana , Propiedades de Superficie
2.
J Hazard Mater ; 179(1-3): 891-4, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20392562

RESUMEN

Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil.


Asunto(s)
Aceites Industriales/análisis , Jatropha/química , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Biomasa , Recuento de Colonia Microbiana , Restauración y Remediación Ambiental , Hidrocarburos/análisis , Jatropha/metabolismo , Nitrógeno/análisis , Petróleo/análisis , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA