Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 137(4): 604-6, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450509

RESUMEN

Caspase-8 is activated at the plasma membrane by the death-inducing signaling complex (DISC). Jin et al. (2009) show that polyubiquitination of caspase-8, rather than targeting it for proteasomal degradation, is critical for sustaining caspase-8 activity after dissociation from the DISC.


Asunto(s)
Caspasa 8/metabolismo , Proteínas Cullin/metabolismo , Apoptosis , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Ubiquitinación
2.
Mol Cell ; 62(4): 572-85, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203180

RESUMEN

Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Citocinas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Citocinas/química , Enzimas Desubicuitinizantes/química , Células HeLa , Humanos , Lisina , Modelos Moleculares , Mutación , Poliubiquitina/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Relación Estructura-Actividad , Ubiquitinación , Ubiquitinas/química , Proteínas Virales/química , Proteínas Virales/genética
3.
Mol Cell ; 48(6): 926-33, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23159736

RESUMEN

Deamidation of N-terminal Gln by the Ntaq1 Nt(Q)-amidase is a part of the Arg/N-end rule pathway, a ubiquitin-dependent proteolytic system. Here we identify Gln-Usp1(Ct), the C-terminal fragment of the autocleaved Usp1 deubiquitylase, as the first physiological Arg/N-end rule substrate that is targeted for degradation through deamidation of N-terminal Gln. Usp1 regulates genomic stability, in part through the deubiquitylation of monoubiquitylated PCNA, a DNA polymerase processivity factor. The autocleaved Usp1 remains a deubiquitylase because its fragments remain associated with Uaf1, an enhancer of Usp1 activity, until the Gln-Usp1(Ct) fragment is selectively destroyed by the Arg/N-end rule pathway. We also show that metabolic stabilization of Gln-Usp1(Ct) results in a decreased monoubiquitylation of PCNA and in a hypersensitivity of cells to ultraviolet irradiation. Thus, in addition to its other functions in DNA repair and chromosome segregation, the Arg/N-end rule pathway regulates genomic stability through the degradation-mediated control of the autocleaved Usp1 deubiquitylase.


Asunto(s)
Endopeptidasas/metabolismo , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Amidohidrolasas/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Aminoaciltransferasas/metabolismo , Animales , Proteínas de Arabidopsis , Línea Celular , Endopeptidasas/genética , Estabilidad de Enzimas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteolisis , Proteasas Ubiquitina-Específicas , Ubiquitinación
4.
Mol Cell ; 33(5): 570-80, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285941

RESUMEN

Vertebrates express three small ubiquitin-related modifiers (SUMO-1, SUMO-2, and SUMO-3) that are conjugated in part to unique subsets of proteins and, thereby, regulate distinct cellular processes. Mechanisms regulating paralog-selective sumoylation, however, remain poorly understood. Despite being equally well modified by SUMO-1 and SUMO-2 in vitro, RanGAP1 is selectively modified by SUMO-1 in vivo. We have found that this paralog-selective modification is determined at the level of deconjugation by isopeptidases. Our findings indicate that, relative to SUMO-2-modified RanGAP1, SUMO-1-modified RanGAP1 forms a more stable, higher affinity complex with the nucleoporin Nup358/RanBP2 that preferentially protects it from isopeptidases. By swapping residues in SUMO-1 and SUMO-2 responsible for Nup358/RanBP2 binding, or by manipulating isopeptidase expression levels, paralog-selective modification of RanGAP1 could be affected both in vitro and in vivo. Thus, protection from isopeptidases, through interactions with SUMO-binding proteins, represents an important mechanism defining paralog-selective sumoylation.


Asunto(s)
Liasas de Carbono-Nitrógeno/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Liasas de Carbono-Nitrógeno/genética , Línea Celular , Cisteína Endopeptidasas/metabolismo , Proteínas Activadoras de GTPasa/genética , Humanos , Ratones , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Conformación Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Factores de Tiempo , Transfección , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
Biochem J ; 468(2): 215-26, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25764917

RESUMEN

Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.


Asunto(s)
Endopeptidasas/metabolismo , Lisina/metabolismo , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Humanos , Conformación Proteica , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Ubiquitinación
6.
Nat Struct Mol Biol ; 31(2): 311-322, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177675

RESUMEN

Targeted protein degradation (TPD) by PROTAC (proteolysis-targeting chimera) and molecular glue small molecules is an emerging therapeutic strategy. To expand the roster of E3 ligases that can be utilized for TPD, we describe the discovery and biochemical characterization of small-molecule ligands targeting the E3 ligase KLHDC2. Furthermore, we functionalize these KLHDC2-targeting ligands into KLHDC2-based BET-family and AR PROTAC degraders and demonstrate KLHDC2-dependent target-protein degradation. Additionally, we offer insight into the assembly of the KLHDC2 E3 ligase complex. Using biochemical binding studies, X-ray crystallography and cryo-EM, we show that the KLHDC2 E3 ligase assembles into a dynamic tetramer held together via its own C terminus, and that this assembly can be modulated by substrate and ligand engagement.


Asunto(s)
Ubiquitina-Proteína Ligasas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ligandos
7.
Clin Cancer Res ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819400

RESUMEN

PURPOSE: Estrogen Receptor (ER) alpha signaling is a known driver of ER-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer. Combining endocrine therapy (ET) such as fulvestrant with CDK4/6, mTOR or PI3K inhibitors is now a central strategy for the treatment of ER+ advanced breast cancer. However, suboptimal ER inhibition and resistance resulting from ESR1 mutation dictates that new therapies are needed. EXPERIMENTAL DESIGN: A medicinal chemistry campaign identified vepdegestrant (ARV-471), a selective, orally bioavailable, potent small molecule PROteolysis-TArgeting Chimera (PROTAC®) degrader of ER. We used biochemical and intracellular target engagement assays to demonstrate the mechanism of action of vepdegestrant, and ESR1 wild-type and mutant ER+ preclinical breast cancer models to demonstrate ER degradation-mediated tumor growth inhibition. RESULTS: Vepdegestrant induced ≥90% degradation of wild-type (WT) and mutant ER, inhibited ER-dependent breast cancer cell line proliferation in-vitro and achieved significant tumor growth inhibition (TGI) (87-123%) in MCF7 orthotopic xenograft models, better than the ET agent fulvestrant (31-80% TGI). In the hormone-independent ER Y537S patient derived xenograft (PDX) breast cancer model ST941/HI, vepdegestrant achieved tumor regressions and was similarly efficacious in the ST941/HI/PBR palbociclib-resistant model (102% TGI). Vepdegestrant induced robust tumor regressions in combination with each of the CDK4/6 inhibitors palbociclib, abemaciclib, and ribociclib, the mTOR inhibitor everolimus, and the PI3K inhibitors alpelisib and inavolisib. CONCLUSIONS: Vepdegestrant achieved greater ER degradation in-vivo compared to fulvestrant, which correlated with improved tumor growth inhibition, suggesting vepdegestrant could be a more effective backbone ET for patients with ER+/HER2- breast cancer.

8.
J Biol Chem ; 286(12): 10238-47, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21247896

RESUMEN

SUMOylation of proteins is a cyclic process that requires both conjugation and deconjugation of SUMO moieties. Besides modification by a single SUMO, SUMO chains have also been observed, yet the dynamics of SUMO conjugation/deconjugation remain poorly understood. Using a non-deconjugatable form of SUMO we demonstrate the underappreciated existence of SUMO chains in vivo, we highlight the importance of SUMO deconjugation, and we demonstrate the highly dynamic nature of the SUMO system. We show that SUMO-specific proteases (SENPs) play a crucial role in the dynamics of SUMO chains in vivo by constant deconjugation. Preventing deSUMOylation in Schizosaccharomyces pombe results in slow growth and a sensitivity to replication stress, highlighting the biological requirement for deSUMOylation dynamics. Furthermore, we present the mechanism of SUMO chain deconjugation by SENPs, which occurs via a stochastic mechanism, resulting in cleavage anywhere within a chain. Our results offer mechanistic insights into the workings of deSUMOylating proteases and highlight their importance in the homeostasis of (poly)SUMO-modified substrates.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sumoilación/fisiología , Células HEK293 , Células HeLa , Humanos , Péptido Hidrolasas/genética , Proteína SUMO-1/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
9.
Nat Rev Drug Discov ; 21(3): 181-200, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35042991

RESUMEN

Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin-proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered 'undruggable'. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas , Proteolisis , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo
10.
Cell Rep ; 36(13): 109754, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34547223

RESUMEN

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/ultraestructura , SARS-CoV-2/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , COVID-19/genética , COVID-19/metabolismo , Proteasas Similares a la Papaína de Coronavirus/genética , Células HEK293 , Humanos , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Unión Proteica/genética , SARS-CoV-2/metabolismo , Especificidad por Sustrato/genética , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo
11.
Chem Sci ; 11(23): 6058-6069, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32953009

RESUMEN

Deubiquitinating enzymes (DUBs) are responsible for removing ubiquitin (Ub) from its protein conjugates. DUBs have been implicated as attractive therapeutic targets in the treatment of viral diseases, neurodegenerative disorders and cancer. The lack of selective chemical tools for the exploration of these enzymes significantly impairs the determination of their roles in both normal and pathological states. Commercially available fluorogenic substrates are based on the C-terminal Ub motif or contain Ub coupled to a fluorophore (Z-LRGG-AMC, Ub-AMC); therefore, these substrates suffer from lack of selectivity. By using a hybrid combinatorial substrate library (HyCoSuL) and a defined P2 library containing a wide variety of nonproteinogenic amino acids, we established a full substrate specificity profile for two DUBs-MERS PLpro and human UCH-L3. Based on these results, we designed and synthesized Ub-based substrates and activity-based probes (ABPs) containing selected unnatural amino acids located in the C-terminal Ub motif. Biochemical analysis and cell lysate experiments confirmed the activity and selectivity of engineered Ub-based substrates and probes. Using this approach, we propose that for any protease that recognizes Ub and Ub-like substrates, a highly active and selective unnatural substrate or probe can be engineered.

12.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067239

RESUMEN

Viral papain-like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library and performed comprehensive activity profiling of SARS-CoV-2 PLpro. On the scaffold of the best hits from positional scanning, we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro. We determined crystal structures of two of these inhibitors in complex with SARS-CoV-2 PLpro that reveals their inhibitory mechanisms and provides a molecular basis for the observed substrate specificity profiles. Last, we demonstrate that SARS-CoV-2 PLpro harbors deISGylating activity similar to SARSCoV-1 PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Together, this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repurposing.


Asunto(s)
Betacoronavirus/enzimología , Diseño de Fármacos , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Betacoronavirus/aislamiento & purificación , Sitios de Unión , COVID-19 , Dominio Catalítico , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Inhibidores de Proteasas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Especificidad por Sustrato , Ubiquitinas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
13.
bioRxiv ; 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32511411

RESUMEN

In December 2019, the first cases of a novel coronavirus infection causing COVID-19 were diagnosed in Wuhan, China. Viral Papain-Like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library containing natural and a wide variety of nonproteinogenic amino acids and performed comprehensive activity profiling of SARS-CoV-2-PLpro. On the scaffold of best hits from positional scanning we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro variants versus other proteases. We determined crystal structures of two of these inhibitors (VIR250 and VIR251) in complex with SARS-CoV-2-PLpro which reveals their inhibitory mechanisms and provides a structural basis for the observed substrate specificity profiles. Lastly, we demonstrate that SARS-CoV-2-PLpro harbors deISGylating activities similar to SARS-CoV-1-PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Altogether this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repositioning.

14.
Biochem J ; 415(3): 367-75, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18601651

RESUMEN

DUBs (deubiquitinating enzymes) are a family of proteases responsible for the specific removal of ubiquitin attached to target proteins and thus control the free cellular pools of this molecule. DUB activity is usually assayed using full-length ubiquitin, and these enzymes generally show low activity towards small substrates that constitute the P4-P1 LRGG (Lys-Arg-Gly-Gly) C-terminal motif of ubiquitin. To gain insight into the C-terminal recognition region of ubiquitin by DUBs, we synthesized positional scanning libraries of fluorigenic tetrapeptides and tested them on three examples of human DUBs [OTU-1 (ovarian tumour 1), Iso-T (isopeptidase T) and UCH-L3 (ubiquitin C-terminal hydrolase L3)] and one viral ubiquitin-specific protease, namely PLpro (papain-like protease) from SARS (severe acute respiratory syndrome) virus. In most cases the results show flexibility in the P4 position, very high specificity for arginine in the P3 position and glycine in the P2 position, in accord with the sequence of the natural substrate, ubiquitin. Surprisingly, screening of the P2 position revealed that UCH-L3, in contrast with all the other tested DUBs, demonstrates substantial tolerance of alanine and valine at P2, and a parallel analysis using the appropriate mutation of the full-length ubiquitin confirms this. We have also used an optimal tetrapeptide substrate, acetyl-Lys-Arg-Gly-Gly-7-amino-4-methylcoumarin, to investigate the activation mechanism of DUBs by ubiquitin and elevated salt concentration. Together, our results reveal the importance of the dual features of (1) substrate specificity and (2) the mechanism of ubiquitin binding in determining deubiquitination by this group of proteases.


Asunto(s)
Endopeptidasas/metabolismo , Ubiquitina/metabolismo , Catálisis , Dominio Catalítico , Técnicas Químicas Combinatorias , Colorantes Fluorescentes , Humanos , Cinética , Espectrometría de Masas , Biblioteca de Péptidos , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas
15.
Fly (Austin) ; 12(2): 118-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29355077

RESUMEN

The COP9 signalosome inhibits the activity of Cullin-RING E3 ubiquitin ligases by removing Nedd8 modifications from their Cullin subunits. Neddylation renders these complexes catalytically active, but deneddylation is also necessary for them to exchange adaptor subunits and avoid auto-ubiquitination. Although deneddylation is thought to be the primary function of the COP9 signalosome, additional activities have been ascribed to some of its subunits. We recently showed that COP9 subunits protect the transcriptional repressor and tumor suppressor Capicua from two distinct modes of degradation. Deneddylation by the COP9 signalosome inactivates a Cullin 1 complex that ubiquitinates Capicua following its phosphorylation by MAP kinase in response to Epidermal Growth Factor Receptor signaling. The CSN1b subunit also stabilizes unphosphorylated Capicua to control its basal level, independently of the deneddylase function of the complex. Here we further examine the importance of deneddylation for COP9 functions in vivo. We use an uncleavable form of Nedd8 to show that preventing deneddylation does not reproduce the effects of loss of COP9. In contrast, in the presence of COP9, conjugation to uncleavable Nedd8 renders Cullins unable to promote the degradation of their substrates. Our results suggest that irreversible neddylation prolongs COP9 binding to and inhibition of Cullin-based ubiquitin ligases.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Proteínas Cullin/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína NEDD8/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Animales , Complejo del Señalosoma COP9/genética , Células Cultivadas , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteína NEDD8/genética , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
J Mol Biol ; 358(2): 559-70, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16524590

RESUMEN

The structure of the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase in complex with cognate DNA was determined at 1.89 A resolution in the presence of S-adenosyl-L-homocysteine. DNA recognition and the dynamics of base-flipping were studied by site-directed mutagenesis, DNA methylation kinetics and fluorescence stopped-flow experiments. Our data illustrate the mechanism of coupling of DNA recognition and base-flipping. Contacts to the non-target strand in the second (3') half of the GATC site are established by R124 to the fourth base-pair, and by L122 and P134 to the third base-pair. The aromatic ring of Y119 intercalates into the DNA between the second and third base-pairs, which is essential for base-flipping to occur. Compared to previous published structures of bacteriophage T4 Dam, three major new observations are made in E.coli Dam. (1) The first Gua is recognized by K9, removal of which abrogates the first base-pair recognition. (2) The flipped target Ade binds to the surface of EcoDam in the absence of S-adenosyl-L-methionine, which illustrates a possible intermediate in the base-flipping pathway. (3) The orphaned Thy residue displays structural flexibility by adopting an extrahelical or intrahelical position where it is in contact to N120.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Metilación de ADN , ADN Bacteriano/genética , Fluorescencia , Cinética , Mutagénesis Sitio-Dirigida , S-Adenosilhomocisteína/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Especificidad por Sustrato
17.
Elife ; 62017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28475037

RESUMEN

NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.


Asunto(s)
Endopeptidasas/metabolismo , Proteína NEDD8/metabolismo , Procesamiento Proteico-Postraduccional , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ciclo Celular , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos
18.
Cell Rep ; 5(3): 826-38, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24210823

RESUMEN

The ubiquitin-modification status of proteins in cells is highly dynamic and maintained by specific ligation machineries (E3 ligases) that tag proteins with ubiquitin or by deubiquitinating enzymes (DUBs) that remove the ubiquitin tag. The development of tools that offset this balance is critical in characterizing signaling pathways that utilize such ubiquitination switches. Herein, we generated a DUB-resistant ubiquitin mutant that is recalcitrant to cleavage by various families of DUBs both in vitro and in mammalian cells. As a proof-of-principle experiment, ectopic expression of the uncleavable ubiquitin stabilized monoubiquitinated PCNA in the absence of DNA damage and also revealed a defect in the clearance of the DNA damage response at unprotected telomeres. Importantly, a proteomic survey using the uncleavable ubiquitin identified ubiquitinated substrates, validating the DUB-resistant ubiquitin expression system as a valuable tool for interrogating cell signaling pathways.


Asunto(s)
Ubiquitina/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Daño del ADN , Células HEK293 , Humanos , Datos de Secuencia Molecular , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
19.
J Innate Immun ; 4(2): 159-67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22223032

RESUMEN

A remarkable feature of pathogenic organisms is their ability to utilize the cellular machinery of host cells to their advantage in facilitating their survival and propagation. Posttranslational modification of proteins offers a quick way to achieve changes in the localization, binding partners or functions of a target protein. It is no surprise then that pathogens have evolved multiple ways to interfere with host posttranslational modifications and hijack them for their own purposes. Recently, modification of proteins by small ubiquitin-like modifier has emerged as an important posttranslational modification regulating transcription, DNA repair and cell division, and literature has started to emerge documenting how it could be utilized by pathogenic bacteria and viruses during infection. In this brief review, we focus on the host small ubiquitin-like modifier (SUMO) system and how disease causing agents influence SUMO conjugation and deconjugation, highlighting the common theme of global hypoSUMOylation upon infection by pathogens.


Asunto(s)
Infecciones Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Virosis/metabolismo , Animales , Infecciones Bacterianas/microbiología , Eucariontes/fisiología , Humanos , Procesamiento Proteico-Postraduccional/fisiología , Virosis/microbiología
20.
Cell Rep ; 2(6): 1475-84, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23219552

RESUMEN

Deubiquitinating enzymes (DUBs) constitute a large family of cysteine proteases that have a broad impact on numerous biological and pathological processes, including the regulation of genomic stability. DUBs are often assembled onto multiprotein complexes to assist in their localization and substrate selection, yet it remains unclear how the enzymatic activity of DUBs is modulated by intracellular signals. Herein, we show that bursts of reactive oxygen species (ROS) reversibly inactivate DUBs through the oxidation of the catalytic cysteine residue. Importantly, USP1, a key regulator of genomic stability, is reversibly inactivated upon oxidative stress. This, in part, explains the rapid nature of PCNA monoubiquitination-dependent DNA damage tolerance in response to oxidative DNA damage in replicating cells. We propose that DUBs of the cysteine protease family act as ROS sensors in human cells and that ROS-mediated DUB inactivation is a critical mechanism for fine-tuning stress-activated signaling pathways.


Asunto(s)
Endopeptidasas/metabolismo , Inestabilidad Genómica , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas de Arabidopsis , Línea Celular Tumoral , Endopeptidasas/genética , Humanos , Proteasas Ubiquitina-Específicas , Proteínas Ubiquitinadas/genética , Ubiquitinación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA