Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Cell ; 82(15): 2871-2884.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35809572

RESUMEN

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Asunto(s)
VIH-1 , Cápside/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , VIH-1/genética , Humanos , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo
2.
PLoS Pathog ; 17(2): e1009164, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524070

RESUMEN

The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.


Asunto(s)
Cápside/metabolismo , VIH-1/fisiología , Lisina/metabolismo , Ácido Fítico/metabolismo , Ensamble de Virus/fisiología , Línea Celular , ADN Viral/biosíntesis , VIH-1/genética , VIH-1/metabolismo , Humanos , Microscopía Fluorescente , Nucleótidos/metabolismo
3.
IUBMB Life ; 74(12): 1169-1179, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35836358

RESUMEN

The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.


Asunto(s)
Toxinas Bacterianas , Citotoxinas , Citotoxinas/metabolismo , Toxinas Bacterianas/genética , Colesterol/metabolismo , Bacterias/metabolismo , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo
4.
Chemphyschem ; 23(3): e202100765, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34856050

RESUMEN

We propose a theoretical model for the influence of confinement on biomolecular binding at the single-molecule scale at equilibrium, based on the change of the number of microstates (localization and orientation) upon reaction. Three cases are discussed: DNA sequences shorter and longer than the single strain DNA Kuhn length and spherical proteins, confined into a spherical container (liposome, droplet, etc.). The influence of confinement is found to be highly dependent on the molecular structure and significant for large molecules (relative to container size).


Asunto(s)
ADN , Modelos Teóricos , ADN/química
5.
Anal Chem ; 93(8): 3786-3793, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33593049

RESUMEN

The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.


Asunto(s)
Cápside , VIH-1 , Sitios de Unión , Proteínas de la Cápside , Espectrometría de Fluorescencia
6.
J Cell Sci ; 131(6)2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29487177

RESUMEN

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Cadenas Pesadas de Miosina , Miosina Tipo IIA no Muscular/genética , Unión Proteica , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo , Tropomiosina/genética
7.
Langmuir ; 36(13): 3624-3632, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32212624

RESUMEN

The human immunodeficiency virus (HIV) capsid is a cone-shaped capsule formed from the viral capsid protein (CA), which is arranged into a lattice of hexamers and pentamers. The capsid comprises multiple binding interfaces for the recruitment of host proteins and macromolecules used by the virus to establish infection. Here, we coassembled CA proteins engineered for pentamer cross-linking and fluorescence labeling, into spherical particles. The CA spheres, which resemble the pentamer-rich structure of the end caps of the native HIV capsid, were immobilized onto surfaces as biorecognition elements for fluorescence microscopy-based quantification of host protein binding. The capsid-binding host protein cyclophilin A (CypA) is bound to CA spheres with the same affinity as CA tubes but at a higher CypA/CA stoichiometry, suggesting that the level of recruitment of CypA to the HIV capsid is dependent on curvature.


Asunto(s)
Cápside , Infecciones por VIH , VIH-1 , Proteínas de la Cápside , Ciclofilina A , Humanos
8.
Retrovirology ; 16(1): 10, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947724

RESUMEN

BACKGROUND: Efficient HIV-1 replication depends on interaction of the viral capsid with the host protein cyclophilin A (CypA). CypA, a peptidylprolyl isomerase, binds to an exposed loop in the viral CA protein via the enzyme's active site. Recent structural analysis of CypA in complex with CA tubes in conjunction with molecular dynamics simulations identified a secondary CA binding site on CypA that allows a bridging interaction with two hexameric subunits of the assembled CA lattice, leading to capsid stabilization (Liu et al. in Nat Commun 7:10714, 2016). RESULTS: We performed mutational analysis of residues that have been proposed to mediate CA binding at the secondary binding site on CypA (A25, K27, P29 and K30) and tested the effects of the amino acid substitutions using interaction assays and HIV-1 infection assays in cells. The binding of recombinant CypA to self-assembled CA tubes or native HIV-1 capsids was measured in vitro using a quantitative fluorescence microscopy binding assay revealing that affinity and stoichiometry of CypA to the CA lattice was not affected by the substitutions. To test for functionality of the CypA secondary CA-binding site in HIV-1 infection, mutant CypA proteins were expressed in cells in which endogenous CypA was deleted, and the effects on HIV-1 infection were assayed. In normal HeLa-P4 cells, infection with HIV-1 bearing the A92E substitution in CA is inhibited by endogenous CypA and was inhibited to the same extent by expression of CypA mutants in CypA-null HeLa-P4 cells. Expression of the mutant CypA proteins in CypA-null Jurkat cells restored their permissiveness to infection by wild type HIV-1. CONCLUSIONS: The amino acid changes at A25, K27, P29 and K30 did not affect the affinity of CypA for the CA lattice and did not impair CypA function in infection assays suggesting that these residues are not part of a secondary CA binding site on CypA.


Asunto(s)
Cápside/metabolismo , Ciclofilina A/química , VIH-1/fisiología , Interacciones Microbiota-Huesped , Replicación Viral , Aminoácidos , Sitios de Unión , Proteínas de la Cápside/metabolismo , Ciclofilina A/genética , Células HeLa , Humanos , Células Jurkat , Unión Proteica , Virión/fisiología
9.
Langmuir ; 34(34): 10012-10018, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30067032

RESUMEN

Single-molecule localization microscopy (SMLM) has created the opportunity of pushing fluorescence microscopy from being a biological imaging tool to a surface characterization and possibly even a quantitative analytical tool. The latter could be achieved by molecular counting using pointillist SMLM data sets. However, SMLM is especially sensitive to background fluorescent signals, which influences any subsequent analysis. Therefore, fabricating sensing surfaces that resist nonspecific adsorption of proteins, even after multiple modification steps, has become paramount. Herein is reported two different ways to modify surfaces: dichlorodimethylsilane-biotinylated bovine serum albumin-Tween-20 (DbT20) and poly-l-lysine grafted polyethylene glycol (PLL-PEG) mixed with biotinylated PLL-PEG (PLL-PEG/PEGbiotin). The results show that the ability to resist nonspecific adsorption of DbT20 surfaces deteriorates with an increase in the number of modification steps required after the addition of the DbT20, which limits the applicability of this surface for SMLM. As such, a new surface for SMLM that employs PLL-PEG/PEGbiotin was developed that exhibits ultralow amounts of nonspecific protein adsorption even after many modification steps. The utility of the surface was demonstrated for human influenza hemagglutinin-tagged mEos2, which was directly pulled down from cell lysates onto the PLL-PEG/PEGbiotin surface. The results strongly indicated that the PLL-PEG/PEGbiotin surface satisfies the criteria of SMLM imaging of a negligible background signal and negligible nonspecific adsorption.

10.
Nucleic Acids Res ; 44(3): 1411-20, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26681693

RESUMEN

Mechanisms for transcription factor recognition of specific DNA base sequences are well characterized and recent studies demonstrate that the shape of these cognate binding sites is also important. Here, we uncover a new mechanism where the transcription factor GabR simultaneously recognizes two cognate binding sites and the shape of a 29 bp DNA sequence that bridges these sites. Small-angle X-ray scattering and multi-angle laser light scattering are consistent with a model where the DNA undergoes a conformational change to bend around GabR during binding. In silico predictions suggest that the bridging DNA sequence is likely to be bendable in one direction and kinetic analysis of mutant DNA sequences with biolayer interferometry, allowed the independent quantification of the relative contribution of DNA base and shape recognition in the GabR-DNA interaction. These indicate that the two cognate binding sites as well as the bendability of the DNA sequence in between these sites are required to form a stable complex. The mechanism of GabR-DNA interaction provides an example where the correct shape of DNA, at a clearly distinct location from the cognate binding site, is required for transcription factor binding and has implications for bioinformatics searches for novel binding sites.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Cromatografía en Gel , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Operón/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Difracción de Rayos X
11.
EMBO J ; 29(3): 655-65, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20033059

RESUMEN

The chaperone Hsc70 drives the clathrin assembly-disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J-domain containing co-chaperone, auxilin, associates with a freshly budded clathrin-coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy-chain-binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 A resolution, the structure of a clathrin coat (in the D6-barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C-terminus of the heavy chain, with a stoichiometry of about one per three-fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J-domain, splits ATP, it clamps firmly onto its heavy-chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly.


Asunto(s)
Auxilinas/metabolismo , Vesículas Cubiertas por Clatrina/química , Clatrina/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Multimerización de Proteína/fisiología , Animales , Auxilinas/química , Bovinos , Clatrina/química , Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Microscopía por Crioelectrón , Proteínas del Choque Térmico HSC70/química , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
12.
Elife ; 132024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347802

RESUMEN

The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Humanos , Cápside , Proteínas de la Cápside , Fármacos Anti-VIH/farmacología
13.
Nat Struct Mol Biol ; 30(3): 370-382, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36624347

RESUMEN

HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.


Asunto(s)
VIH-1 , VIH-1/metabolismo , Cápside/metabolismo , Ensamble de Virus , Proteínas de la Cápside/metabolismo , Ácido Fítico/metabolismo , Virión
14.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37693451

RESUMEN

Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.

15.
Biophys Rev ; 14(1): 23-32, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35340594

RESUMEN

Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.

16.
Elife ; 112022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36000711

RESUMEN

The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.


Asunto(s)
Toxinas Bacterianas , Proteínas Hemolisinas , Animales , Toxinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Proteínas Hemolisinas/metabolismo , Liposomas/metabolismo , Mamíferos/metabolismo
17.
ACS Nano ; 16(4): 6455-6467, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35316035

RESUMEN

Biomolecular complexes can form stable assemblies yet can also rapidly exchange their subunits to adapt to environmental changes. Simultaneously allowing for both stability and rapid exchange expands the functional capacity of biomolecular machines and enables continuous function while navigating a complex molecular world. Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange. The system utilizes a mechanism first outlined in the context of the DNA replisome, known as multisite competitive exchange, and achieves a large separation of time scales between spontaneous subunit dissociation, which requires days, and rapid subunit exchange, which occurs in minutes. In addition, we use the DNA origami receptor to demonstrate stable interactions with rapid exchange of both DNA and protein subunits, thus highlighting the applicability of our approach to arbitrary molecular cargo, an important distinction with canonical toehold exchange between single-stranded DNA. We expect this study to benefit future studies that use DNA origami structures to exploit multivalent interactions for the design and synthesis of a wide range of possible kinetic behaviors.


Asunto(s)
Nanoestructuras , Nanotecnología , ADN/química , ADN de Cadena Simple , Nanoestructuras/química , Conformación de Ácido Nucleico
18.
Biophys J ; 101(4): 764-73, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21843466

RESUMEN

The physical attributes of the extracellular matrix play a key role in endothelium function by modulating the morphology and phenotype of endothelial cells. Despite the recognized importance of matrix-cell interactions, it is currently not known how the arrangement of adhesive ligands affects the morphology, signal transduction processes, and migration of endothelial cells. We aimed to study how endothelial cells respond to the average spatial arrangement of integrin ligands. We designed functionalized silicon surfaces with average spacing ranging from nanometers to micrometers of the peptide arginine-glycine-aspartic acid (RGD). We found that endothelial cells adhered to and spread on surfaces independently of RGD-to-RGD spacing. In contrast, organization within focal adhesions (FAs) was extremely sensitive to ligand spacing, requiring a nanoscaled average RGD spacing of 44 nm to form lipid raft domains at FAs. The localized membrane organization strongly correlated with the signaling efficiencies of integrin activation and regulated vascular endothelial growth factor (VEGF)-induced signaling events. Importantly, this modulation in signal transduction directly affected the migratory ability of endothelial cells. We conclude that endothelial cells sense nanoscaled variations in the spacing of integrin ligands, which in turn influences signal transduction processes. Average RGD spacing similar to that found in fibronectin leads to lipid raft accumulation at FAs, enhances sensitivity to VEGF stimulation, and controls migration in endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Integrinas/metabolismo , Transducción de Señal , Animales , Bovinos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero/farmacología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Ligandos , Transducción de Señal/efectos de los fármacos , Silicio/química , Propiedades de Superficie/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología
19.
Sci Adv ; 7(47): eabj5715, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797722

RESUMEN

The viral capsid plays essential roles in HIV replication and is a major platform engaging host factors. To overcome challenges in study native capsid structure, we used the perfringolysin O to perforate the membrane of HIV-1 particles, thus allowing host proteins and small molecules to access the native capsid while improving cryo­electron microscopy image quality. Using cryo­electron tomography and subtomogram averaging, we determined the structures of native capsomers in the presence and absence of inositol hexakisphosphate (IP6) and cyclophilin A and constructed an all-atom model of a complete HIV-1 capsid. Our structures reveal two IP6 binding sites and modes of cyclophilin A interactions. Free energy calculations substantiate the two binding sites at R18 and K25 and further show a prohibitive energy barrier for IP6 to pass through the pentamer. Our results demonstrate that perfringolysin O perforation is a valuable tool for structural analyses of enveloped virus capsids and interactions with host cell factors.

20.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33692109

RESUMEN

HIV virion assembly begins with the construction of an immature lattice consisting of Gag hexamers. Upon virion release, protease-mediated Gag cleavage leads to a maturation event in which the immature lattice disassembles and the mature capsid assembles. The cellular metabolite inositiol hexakisphosphate (IP6) and maturation inhibitors (MIs) both bind and stabilize immature Gag hexamers, but whereas IP6 promotes virus maturation, MIs inhibit it. Here we show that HIV is evolutionarily constrained to maintain an immature lattice stability that ensures IP6 packaging without preventing maturation. Replication-deficient mutant viruses with reduced IP6 recruitment display increased infectivity upon treatment with the MI PF46396 (PF96) or the acquisition of second-site compensatory mutations. Both PF96 and second-site mutations stabilise the immature lattice and restore IP6 incorporation, suggesting that immature lattice stability and IP6 binding are interdependent. This IP6 dependence suggests that modifying MIs to compete with IP6 for Gag hexamer binding could substantially improve MI antiviral potency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA