RESUMEN
The angiotensin II receptors AT1R and AT2R serve as key components of the renin-angiotensin-aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or ß-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.
Asunto(s)
Modelos Moleculares , Receptor de Angiotensina Tipo 2/química , Receptor de Angiotensina Tipo 2/metabolismo , Bloqueadores del Receptor Tipo 2 de Angiotensina II/química , Bloqueadores del Receptor Tipo 2 de Angiotensina II/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Diseño de Fármacos , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Conformación Proteica , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/genética , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato/genética , beta-Arrestinas/metabolismoRESUMEN
The bromodomain and extra-terminal (BET) family of proteins, consisting of the bromodomains containing protein 2 (BRD2), BRD3, BRD4, and the testis-specific BRDT, are key epigenetic regulators of gene transcription and has emerged as an attractive target for anticancer therapy. Herein, we describe the discovery of a novel potent BET bromodomain inhibitor, using a systematic structure-based approach focused on improving potency, metabolic stability, and permeability. The optimized dimethylisoxazole aryl-benzimidazole inhibitor exhibited high potency towards BRD4 and related BET proteins in biochemical and cell-based assays and inhibited tumor growth in two proof-of-concept preclinical animal models.
Asunto(s)
Bencimidazoles/farmacología , Descubrimiento de Drogas , Isoxazoles/farmacología , Mieloma Múltiple/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Administración Oral , Animales , Bencimidazoles/química , Bencimidazoles/metabolismo , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Isoxazoles/administración & dosificación , Isoxazoles/química , Isoxazoles/metabolismo , Ratones , Estructura Molecular , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Dominios Proteicos/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/metabolismoRESUMEN
In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.
Asunto(s)
Antagonistas de los Receptores de Orexina/farmacología , Orexinas/antagonistas & inhibidores , Animales , Electroencefalografía , Electromiografía , Estructura Molecular , Antagonistas de los Receptores de Orexina/química , RatasRESUMEN
The importance of engineering protein stability is well-known and has the potential to impact many fields ranging from pharmaceuticals to food sciences. Engineering proteins can be both a time-consuming and expensive experimental process. The use of computation is a potential solution to mitigating some of the time and expenses required to engineer a protein. This process has been previously hindered by inaccurate force fields or energy equations and slow computational processors; however, improved software and hardware have made this goal much more attainable. Here we find that Schrödinger's new FEP+, although still imperfect, proves more successful in predicting protein stability than other simpler methods of investigation. This increased accuracy comes at a cost of computational time and resources when compared to simpler methods. This work adds to the initial testing of FEP+ by offering options for more accurately predicting protein stability in an efficient manner.
Asunto(s)
Biología Computacional/métodos , Estabilidad Proteica , Estudios de Factibilidad , Nucleasa Microcócica/química , Nucleasa Microcócica/genética , Nucleasa Microcócica/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , TermodinámicaRESUMEN
One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough. Currently, most DAAs inhibit HCV replication. We recently reported that the combination of two distinct classes of HCV inhibitors, entry inhibitors and replication inhibitors, prolonged reductions in extracellular HCV in persistently infected cells. We therefore sought to identify new inhibitors targeting aspects of the HCV replication cycle other than RNA replication. We report here the discovery of the first small-molecule HCV infectivity inhibitor, GS-563253, also called HCV infectivity inhibitor 1 (HCV II-1). HCV II-1 is a substituted tetrahydroquinoline that selectively inhibits genotype 1 and 2 HCVs with low-nanomolar 50% effective concentrations. It was identified through a high-throughput screen and subsequent chemical optimization. HCV II-1 only permits the production and release of noninfectious HCV particles from cells. Moreover, infectious HCV is rapidly inactivated in its presence. HCV II-1 resistance mutations map to HCV E2. In addition, HCV-II prevents HCV endosomal fusion, suggesting that it either locks the viral envelope in its prefusion state or promotes a viral envelope conformation change incapable of fusion. Importantly, the discovery of HCV II-1 opens up a new class of HCV inhibitors that prolong viral suppression by HCV replication inhibitors in persistently infected cell cultures.
Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Antivirales/química , Línea Celular , Farmacorresistencia Viral , Hepacivirus/metabolismo , Hepatitis C/tratamiento farmacológico , Humanos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacosRESUMEN
Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas Bacterianas , Lipopolisacáridos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Lipopolisacáridos/metabolismo , Animales , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Ratones , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Transporte Biológico , Pruebas de Sensibilidad Microbiana , Humanos , Microscopía por Crioelectrón , Carbapenémicos/farmacología , Carbapenémicos/metabolismo , Modelos Animales de Enfermedad , Femenino , Transportadoras de Casetes de Unión a ATPRESUMEN
Acinetobacter baumannii, a commonly multidrug-resistant Gram-negative bacterium responsible for large numbers of bloodstream and lung infections worldwide, is increasingly difficult to treat and constitutes a growing threat to human health. Structurally novel antibacterial chemical matter that can evade existing resistance mechanisms is essential for addressing this critical medical need. Herein, we describe our efforts to inhibit the essential A. baumannii lipooligosaccharide (LOS) ATP-binding cassette (ABC) transporter MsbA. An unexpected impurity from a phenotypic screening was optimized as a series of dimeric compounds, culminating with 1 (cerastecin D), which exhibited antibacterial activity in the presence of human serum and a pharmacokinetic profile sufficient to achieve efficacy against A. baumannii in murine septicemia and lung infection models.
Asunto(s)
Transportadoras de Casetes de Unión a ATP , Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas Bacterianas , Lipopolisacáridos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Animales , Lipopolisacáridos/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Ratones , Humanos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Pruebas de Sensibilidad MicrobianaRESUMEN
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.
Asunto(s)
Acetatos/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/metabolismo , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/enzimología , Quinolinas/farmacología , Factores de Transcripción/metabolismo , Integración Viral/efectos de los fármacos , Acetatos/química , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Cromatina/genética , ADN Viral/genética , ADN Viral/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Infecciones por VIH/genética , Integrasa de VIH/química , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/química , VIH-1/genética , Humanos , Quinolinas/química , Factores de Transcripción/genética , Integración Viral/fisiologíaRESUMEN
Fragment screens for new ligands have had wide success, notwithstanding their constraint to libraries of 1,000-10,000 molecules. Larger libraries would be addressable were molecular docking reliable for fragment screens, but this has not been widely accepted. To investigate docking's ability to prioritize fragments, a library of >137,000 such molecules were docked against the structure of beta-lactamase. Forty-eight fragments highly ranked by docking were acquired and tested; 23 had K(i) values ranging from 0.7 to 9.2 mM. X-ray crystal structures of the enzyme-bound complexes were determined for 8 of the fragments. For 4, the correspondence between the predicted and experimental structures was high (RMSD between 1.2 and 1.4 A), whereas for another 2, the fidelity was lower but retained most key interactions (RMSD 2.4-2.6 A). Two of the 8 fragments adopted very different poses in the active site owing to enzyme conformational changes. The 48% hit rate of the fragment docking compares very favorably with "lead-like" docking and high-throughput screening against the same enzyme. To understand this, we investigated the occurrence of the fragment scaffolds among larger, lead-like molecules. Approximately 1% of commercially available fragments contain these inhibitors whereas only 10(-7)% of lead-like molecules do. This suggests that many more chemotypes and combinations of chemotypes are present among fragments than are available among lead-like molecules, contributing to the higher hit rates. The ability of docking to prioritize these fragments suggests that the technique can be used to exploit the better chemotype coverage that exists at the fragment level.
Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores de beta-Lactamasas , beta-Lactamasas/química , Técnicas Químicas Combinatorias , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , LigandosRESUMEN
The interaction between lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF) and human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for HIV-1 replication. Homogeneous time-resolved fluorescence resonance energy transfer assays were developed to characterize HIV-1 integrase dimerization and the interaction between LEDGF and IN dimers. Using these assays in an equilibrium end point dose-response format with mathematical modeling, we determined the dissociation constants of IN dimers (K(dimer) = 67.8 pm) and of LEDGF from IN dimers (K(d) = 10.9 nm). When used in a kinetic format, the assays allowed the determination of the on- and off-rate constants for these same interactions. Integrase dimerization had a k(on) of 0.1247 nm(-1) x min(-1) and a k(off) of 0.0080 min(-1) resulting in a K(dimer) of 64.5 pm. LEDGF binding to IN dimers had a k(on) of 0.0285 nm(-1).min(-1) and a k(off) of 0.2340 min(-1) resulting in a K(d) of 8.2 nm. These binding assays can also be used in an equilibrium end point competition format. In this format, the IN catalytic core domain produced a K(i) of 15.2 nm while competing for integrase dimerization, confirming the very tight interaction of IN with itself. In the same format, LEDGF produced a K(i) value of 35 nm when competing for LEDGF binding to IN dimers. In summary, this study describes a methodology combining homogeneous time-resolved fluorescence resonance energy transfer and mathematical modeling to derive the affinities between IN monomers and between LEDGF and IN dimers. This study revealed the significantly tighter nature of the IN-IN dimer compared with the IN-LEDGF interaction.
Asunto(s)
Integrasa de VIH/química , Integrasa de VIH/metabolismo , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Algoritmos , Secuencia de Aminoácidos , Unión Competitiva , Transferencia Resonante de Energía de Fluorescencia , Integrasa de VIH/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Cinética , Modelos Biológicos , Modelos Químicos , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de ProteínaRESUMEN
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children and older adults. Currently, no licensed vaccine is available, and therapeutic options are limited. The primary target of neutralizing antibodies to RSV is the surface fusion (F) glycoprotein. Understanding the recognition of antibodies with high neutralization potencies to RSV F antigen will provide critical insights in developing efficacious RSV antibodies and vaccines. In this study, we isolated and characterized a panel of monoclonal antibodies (mAbs) with high binding affinity to RSV prefusion F trimer and neutralization potency to RSV viruses. The mAbs were mapped to previously defined antigenic sites, and some that mapped to the same antigenic sites showed remarkable diversity in specificity, binding, and neutralization potencies. We found that the isolated site III mAbs shared highly conserved germline V-gene usage, but had different cross-reactivities to human metapneumovirus (hMPV), possibly due to the distinct modes/angles of interaction with RSV and hMPV F proteins. Furthermore, we identified a subset of potent RSV/hMPV cross-neutralizing mAbs that target antigenic site IV and the recently defined antigenic site V, while the majority of the mAbs targeting these two sites only neutralize RSV. Additionally, the isolated mAbs targeting site Ø were mono-specific for RSV and showed a wide range of neutralizing potencies on different RSV subtypes. Our data exemplify the diversity of anti-RSV mAbs and provide new insights into the immune recognition of respiratory viruses in the Pneumoviridae family.
Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B/inmunología , Epítopos de Linfocito B/inmunología , Memoria Inmunológica , Virus Sincitial Respiratorio Humano/inmunología , Anciano , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Niño , Preescolar , HumanosRESUMEN
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 A crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H(432)R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H(432)N was drug-independent, coinciding with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H(432) mutants were recessive to wild-type Tdp1. Thus, yeast H(432) acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H(432)N-catalyzed resolution of 3' phospho-adducts.
Asunto(s)
Sitios de Unión , ADN-Topoisomerasas de Tipo I/metabolismo , Mutación , Hidrolasas Diéster Fosfóricas , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Aductos de ADN , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/toxicidad , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/toxicidad , Alineación de Secuencia , Especificidad por SustratoRESUMEN
High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate "hit lists"; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against beta-lactamase using quantitative HTS (qHTS). Of the 1,274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting beta-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 microM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores de beta-Lactamasas , Cristalografía , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Espectrometría de Masas , Relación Estructura-ActividadRESUMEN
High-throughput screening (HTS) is the primary technique for new lead identification in drug discovery and chemical biology. Unfortunately, it is susceptible to false-positive hits. One common mechanism for such false-positives is the congregation of organic molecules into colloidal aggregates, which nonspecifically inhibit enzymes. To both evaluate the feasibility of large-scale identification of aggregate-based inhibition and quantify its prevalence among screening hits, we tested 70,563 molecules from the National Institutes of Health Chemical Genomics Center (NCGC) library for detergent-sensitive inhibition. Each molecule was screened in at least seven concentrations, such that dose-response curves were obtained for all molecules in the library. There were 1274 inhibitors identified in total, of which 1204 were unambiguously detergent-sensitive. We identified these as aggregate-based inhibitors. Thirty-one library molecules were independently purchased and retested in secondary low-throughput experiments; 29 of these were confirmed as either aggregators or nonaggregators, as appropriate. Finally, with the dose-response information collected for every compound, we could examine the correlation between aggregate-based inhibition and steep dose-response curves. Three key results emerge from this study: first, detergent-dependent identification of aggregate-based inhibition is feasible on the large scale. Second, 95% of the actives obtained in this screen are aggregate-based inhibitors. Third, aggregate-based inhibition is correlated with steep dose-response curves, although not absolutely. The results of this screen are being released publicly via the PubChem database.
Asunto(s)
Detergentes/química , Compuestos Orgánicos/química , Preparaciones Farmacéuticas/química , Fenómenos Químicos , Química Física , Coloides , Diseño de Fármacos , Estudios de Factibilidad , Cinética , beta-Lactamasas/químicaRESUMEN
Virtual screening (VS) in the context of drug discovery is the use of computational methods to discover novel ligands with a desired biological activity from within a larger collection of molecules. These techniques have been in use for many years, there is a wide range of methodologies available, and many successful applications have been reported in the literature. VS is often used as an alternative or a complement to High-throughput screening (HTS) or other methods to identify ligands for target validation or medicinal chemistry projects. This unit does not present an exhaustive review of available methods, or document specific instructions on use of individual software packages. Rather, a general overview of the methods available are presented and general strategies are described for VS based on accepted practices and the authors' experience as computational chemists in an industrial research laboratory. First, the most common methods available for VS are reviewed, categorized as either receptor- or ligand-based. Subsequently, strategic considerations are presented for choosing a VS method, or a combination of methods, as well as the necessary steps to prepare, run, and analyze a VS campaign. © 2017 by John Wiley & Sons, Inc.
Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
Dihydropterate synthase (DHPS) is the target for the sulfonamide class of antibiotics, but increasing resistance has encouraged the development of new therapeutic agents against this enzyme. One approach is to identify molecules that occupy the pterin binding pocket which is distinct from the pABA binding pocket that binds sulfonamides. Toward this goal, we present five crystal structures of DHPS from Bacillus anthracis, a well-documented bioterrorism agent. Three DHPS structures are already known, but our B. anthracis structures provide new insights into the enzyme mechanism. We show how an arginine side chain mimics the pterin ring in binding within the pterin binding pocket. The structures of two substrate analog complexes and the first structure of a DHPS-product complex offer new insights into the catalytic mechanism and the architecture of the pABA binding pocket. Finally, as an initial step in the development of pterin-based inhibitors, we present the structure of DHPS complexed with 5-nitro-6-methylamino-isocytosine.
Asunto(s)
Bacillus anthracis/enzimología , Dihidropteroato Sintasa/antagonistas & inhibidores , Dihidropteroato Sintasa/química , Inhibidores Enzimáticos/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Bacillus anthracis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Bioterrorismo , Cristalografía por Rayos X , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo , Diseño de Fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Estructura Secundaria de Proteína , Pterinas/química , Pterinas/metabolismo , Alineación de SecuenciaRESUMEN
The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) regulate sleep and other behavioral functions in mammals, and are therapeutic targets for sleep and wake disorders. The human receptors hOX1R and hOX2R, which are 64% identical in sequence, have overlapping but distinct physiological functions and potential therapeutic profiles. We determined structures of hOX1R bound to the OX1R-selective antagonist SB-674042 and the dual antagonist suvorexant at 2.8-Å and 2.75-Å resolution, respectively, and used molecular modeling to illuminate mechanisms of antagonist subtype selectivity between hOX1R and hOX2R. The hOX1R structures also reveal a conserved amphipathic α-helix, in the extracellular N-terminal region, that interacts with orexin-A and is essential for high-potency neuropeptide activation at both receptors. The orexin-receptor crystal structures are valuable tools for the design and development of selective orexin-receptor antagonists and agonists.
Asunto(s)
Azepinas/farmacología , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/química , Receptores de Orexina/metabolismo , Pirrolidinas/farmacología , Tiazoles/farmacología , Triazoles/farmacología , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación ProteicaRESUMEN
Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimer's disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.
Asunto(s)
Descubrimiento de Drogas , Isoquinolinas/química , Imagen Molecular , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/farmacocinética , Estructura Molecular , Ovillos Neurofibrilares/metabolismoRESUMEN
GS-5806 is a novel, orally bioavailable RSV fusion inhibitor discovered following a lead optimization campaign on a screening hit. The oral absorption properties were optimized by converting to the pyrazolo[1,5-a]-pyrimidine heterocycle, while potency, metabolic, and physicochemical properties were optimized by introducing the para-chloro and aminopyrrolidine groups. A mean EC50 = 0.43 nM was found toward a panel of 75 RSV A and B clinical isolates and dose-dependent antiviral efficacy in the cotton rat model of RSV infection. Oral bioavailability in preclinical species ranged from 46 to 100%, with evidence of efficient penetration into lung tissue. In healthy human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a mean 4.2 log10 reduction in peak viral load and a significant reduction in disease severity compared to placebo. In conclusion, a potent, once daily, oral RSV fusion inhibitor with the potential to treat RSV infection in infants and adults is reported.
Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Pirazoles/farmacología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/efectos de los fármacos , Sulfonamidas/farmacología , Internalización del Virus/efectos de los fármacos , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/química , Perros , Relación Dosis-Respuesta a Droga , Humanos , Indazoles , Macaca fascicularis , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirazoles/administración & dosificación , Pirazoles/química , Ratas , Virus Sincitiales Respiratorios/fisiología , Relación Estructura-Actividad , Sulfonamidas/administración & dosificación , Sulfonamidas/químicaRESUMEN
BACKGROUND: The registrational phase III clinical trials of the nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) rilpivirine (RPV) in combination with two nucleoside/nucleotide RT inhibitors (NRTIs) found a unique genotypic resistance pattern involving the NNRTI mutation E138K with the NRTI mutation M184I. Eighty percent of subjects used emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF); a single tablet regimen of FTC/RPV/TDF is in development. METHODS: HIV-1 with E138K and/or M184V or I mutations were constructed and phenotyped in MT-2 cells and the PhenoSense and Antivirogram assays. Viral fitness was determined using growth competitions. Molecular models of the mutants were constructed from the RT-RPV crystal structure. RESULTS: The E138K mutant showed low-level reduced susceptibility to RPV (2.4-fold), but full susceptibility to FTC and tenofovir (TFV). Viruses with M184V or M184I showed high-level resistance to FTC and full susceptibility to RPV and TFV. Addition of M184I, but not M184V, to E138K, further decreased susceptibility to RPV and maintained FTC resistance. The E138K and M184V or I single and double mutants showed decreased replication fitness compared with wild type. M184V outcompeted M184I when compared directly and in the background of E138K. E138K + M184I was less fit than either E138K or M184I alone. Removing a salt bridge between E138/K101 is implicated in resistance to RPV. CONCLUSIONS: The higher frequency of E138K and M184I among RPV + FTC/TDF virologic failures is due to reduced susceptibility of the single mutants to RPV and FTC and the enhanced resistance to RPV for the double mutant at the cost of decreased viral fitness.